Generalized Constraint and Joint Reaction Forces in the Inverse Dynamics of Spatial Flexible Mechanical Systems

1994 ◽  
Vol 116 (3) ◽  
pp. 777-784 ◽  
Author(s):  
D. C. Chen ◽  
A. A. Shabana ◽  
J. Rismantab-Sany

In both the augmented and recursive formulations of the dynamic equations of flexible mechanical systems, the inerita, constraints, and applied forces must be properly defined. The inverse dynamics is a commonly used approach for the force analysis of mechanical systems. In this approach, the system is kinematically driven using specified motion trajectories, and the objective is to determine the driving forces and torques. In flexible body dynamics, however, a force that acts at a point on the deformable body is equipollent to a system, defined at another point, that consists of the same force, a moment that depends on the relative deformation between the two points, and a set of generalized forces associated with the elastic coordinates. Furthermore, a moment in flexible body dynamics is no longer a free vector. It is defined by the location of its line of action as well as its magnitude and direction. The joint reaction and generalized constraint forces represent equipollent systems of forces. Both systems in flexible body dynamics are function of the deformation. In this investigation, a procedure is developed for the determination of the joint reaction forces in spatial flexible mechanical systems. The mathematical formulation of some mechanical joints that are often encountered in the analysis of constrained flexible mechanical systems is discussed. Expressions for the generalized reaction forces in terms of the constraint Jacobian matrices of the joints are presented. The effect of the elastic deformation on the reaction forces is also examined numerically using the spatial flexible multibody RSSR mechanism that consists of a set of interconnected rigid and elastic bodies. The procedure described in this investigation can also be used to determine the joint torques and actuator forces in kinematically driven spatial elastic mechanism and manipulator systems.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Quental Carlos ◽  
Azevedo Margarida ◽  
Ambrósio Jorge ◽  
Gonçalves S. B. ◽  
Folgado João

Abstract Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.


Author(s):  
Gang Wang ◽  
Zhaohui Qi

In this study, a drive system connected by rolling bearings and double universal joints is modeled as a closed-loop multibody system. Because of the existence of redundant constraints, the joint reaction forces cannot be determined uniquely through dynamic analysis. Based on the physical mechanism where the joint reaction forces are the resultants of contact forces at the joint definition point, a methodology of frictionless contact analysis is presented to identify joint reaction forces. In terms of D’Alembert’s principle, the dynamic equations of constrained multibody systems are equivalent to the equilibrium equations of all bodies composed of joint contact forces, externally applied forces, and inertial forces. The equivalent equilibrium equations provide a set of complementary equations to identify the contact positions and contact forces in the rolling bearings and double universal joints. The drive system is also simulated using ADAMS software, where all the joints are released and the corresponding constraint functions are replaced by the impact forces between the joint components. Some conclusions are obtained through the comparison of numerical examples between the proposed method and the ADAMS model. In the double universal joints, the equations are adequate and independent, which results in that the corresponding contact positions and contact forces can be solved uniquely. Then, the correlation between the data produced by these two models is acceptable in the engineering practices. Furthermore, contact details in the double universal joints can be obtained without the calculation of the relative motion between the cross-pin and yokes. However, the reaction forces in the rolling bearings are indeterminate due to that their complementary equations are not independent. The proposed method has high efficiency and acceptable precision.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Lauranne Sins ◽  
Patrice Tétreault ◽  
Nicola Hagemeister ◽  
Natalia Nuño

Current musculoskeletal inverse dynamics shoulder models have two limitations to use in the context of nonconforming total shoulder arthroplasty (NC-TSA). First, the ball and socket glenohumeral (GH) joint simplification avoids any humeral head translations. Second, there is no contact at the GH joint to compute the contact area and the center of pressure (COP) between the two components of NC-TSA. In this paper, we adapted the AnyBody™ shoulder model by introducing humeral head translations and contact between the two components of an NC-TSA. Abduction in the scapular plane was considered. The main objective of this study was to adapt the AnyBody™ shoulder model to a NC-TSA context and to compare the results of our model (translations, COP, contact area, GH joint reaction forces (GH-JRFs), and muscular forces) with previous numerical, experimental, and clinical studies. Humeral head translations and contact were successfully introduced in our adapted shoulder model with strong support for our findings by previous studies.


2001 ◽  
Vol 17 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Jeremy J. Bauer ◽  
Robyn K. Fuchs ◽  
Gerald A. Smith ◽  
Christine M. Snow

Drop landings increase hip bone mass in children. However, force characteristics from these landings have not been studied. We evaluated ground and hip joint reaction forces, average loading rates, and changes across multiple trials from drop landings associated with osteogenesis in children. Thirteen prepubescent children who had previously participated in a bone loading program volunteered for testing. They performed 100 drop landings onto a force plate. Ground reaction forces (GRF) and two-dimensional kinematic data were recorded. Hip joint reaction forces were calculated using inverse dynamics. Maximum GRF were 8.5 ± 2.2 body weight (BW). At initial contact, GRF were 5.6 ± 1.4 BW while hip joint reactions were 4.7 ± 1.4 BW. Average loading rates for GRF were 472 ± 168 BW/s. Ground reaction forces did not change significantly across trials for the group. However, 5 individuals showed changes in max GRF across trials. Our data indicate that GRF are attenuated 19% to the hip at the first impact peak and 49% at the second impact peak. Given the skeletal response from the drop landing protocol and our analysis of the associated force magnitudes and average loading rates, we now have a data point on the response surface for future study of various combinations of force, rate, and number of load repetitions for increasing bone in children.


2015 ◽  
Vol 31 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Rebecca L. Lambach ◽  
Jay W. Young ◽  
David C. Flanigan ◽  
Robert A. Siston ◽  
Ajit M.W. Chaudhari

Linemen are at high risk for knee cartilage injuries and osteoarthritis. High-intensity movements from squatting positions (eg, 3-point stance) may produce high joint loads, increasing the risk for cartilage damage. We hypothesized that knee moments and joint reaction forces during lineman-specific activities would be greater than during walking or jogging. Data were collected using standard motion analysis techniques. Fifteen NCAA linemen (mean ± SD: height = 1.86 ± 0.07 m, mass = 121.45 ± 12.78 kg) walked, jogged, and performed 3 unloaded lineman-specific blocking movements from a 3-point stance. External 3-dimensional knee moments and joint reaction forces were calculated using inverse dynamics equations. MANOVA with subsequent univariate ANOVA and post hoc Tukey comparisons were used to determine differences in peak kinetic variables and the flexion angles at which they occurred. All peak moments and joint reaction forces were significantly higher during jogging than during all blocking drills (all P < .001). Peak moments occurred at average knee flexion angles > 70° during blocking versus < 44° in walking or jogging. The magnitude of moments and joint reaction forces when initiating movement from a 3-point stance do not appear to increase risk for cartilage damage, but the high flexion angles at which they occur may increase risk on the posterior femoral condyles.


Sign in / Sign up

Export Citation Format

Share Document