Analysis of Unsteady Compressible Viscous Layers

1991 ◽  
Vol 113 (4) ◽  
pp. 644-653 ◽  
Author(s):  
G. D. Power ◽  
J. M. Verdon ◽  
K. A. Kousen

The development of an analysis to predict the unsteady compressible flows in blade boundary layers and wakes is presented. The equations that govern the flows in these regions are transformed using an unsteady turbulent generalization of the Levy–Lees transformation. The transformed equations are solved using a finite difference technique in which the solution proceeds by marching in time and in the streamwise direction. Both laminar and turbulent flows are studied, the latter using algebraic turbulence and transition models. Laminar solutions for a flat plate are shown to approach classical asymptotic results for both high and low-frequency unsteady motions. Turbulent flat-plate results are in qualitative agreement with previous predictions and measurements. Finally, the numerical technique is also applied to the stator and rotor of a low-speed turbine stage to determine unsteady effects on surface heating. The results compare reasonably well with measured heat transfer data and indicate that nonlinear effects have minimal impact on the mean and unsteady components of the flow.

Author(s):  
G. D. Power ◽  
J. M. Verdon ◽  
K. A. Kousen

The development of an analysis to predict the unsteady compressible flows in blade boundary layers and wakes is presented. The equations that govern the flows in these regions are transformed using an unsteady turbulent generalization of the Levy-Lees transformation. The transformed equations are solved using a finite difference technique in which the solution proceeds by marching in time and in the streamwise direction. Both laminar and turbulent flows are studied, the latter using algebraic turbulence and transition models. Laminar solutions for a flat plate are shown to approach classical asymptotic results for both high and low frequency unsteady motions. Turbulent flat-plate results are in qualitative agreement with previous predictions and measurements. Finally, the numerical technique is also applied to the stator and rotor of a low-speed turbine stage to determine unsteady effects on surface heating. The results compare reasonably well with measured heat transfer data and indicate that nonlinear effects have minimal impact on the mean and unsteady components of the flow.


Author(s):  
Yong-Wen Wu ◽  
Jia Wu

The oscillatory flow in a baffled tube reactor provides a significant enhancement of radial transfer of momentum, heat and mass and a good control of axial back mixing at a wide range of net flow rate. But little has been known about reliable details of the three-dimensional structure of flow field in this kind of flow because most published studies in the area were based on the two-dimensional simulation techniques. This paper implemented a three-dimensional numerical simulation study on the asymmetry of flow pattern in the baffled tube reactor which was observed experimentally. A systematic study by numerical simulation was carried out which covered a range of oscillatory Reynolds number (Reo) from 100 to 5,000 and employed models respectively for laminar and turbulent flows. It was found in the simulation that under symmetric boundary conditions the transition from axially symmetric flow to asymmetric one depended on the numerical technique employed in simulation. With a structured grid frame the transition occurred at Reo much greater than that with an unstructured grid frame, for both laminar and turbulent flows. It is not rational that the onset of the transition changes with the accuracy of numerical technique. Based on the simulation results, it was postulated that the asymmetry appeared in simulations with symmetric boundary conditions might result from the accumulation of calculation errors but the asymmetry observed in experiments might result from the slight asymmetry of geometry which exists inevitably in any experiment apparatus. To explore the influence of the slight asymmetry of geometry, the effect of the eccentricity of baffles and the declination of oscillating boundary were studied by use of the finite volume method with a structured grid and adaptive time steps. The simulation result showed that both the eccentricity of baffles and the declination of oscillating boundary have obvious influence on the asymmetry of flow patterns for laminar and turbulent flow. More details were discussed in the paper.


1995 ◽  
Vol 2 (2) ◽  
pp. 455-460
Author(s):  
Shengwo Sheng

Sound absorption phenomenon of pseudostochastic diffusers was investigated in this paper. The mechanism of high absorption at low frequency was explained from the point view of energy dissipation due to nonlinear effects.


1995 ◽  
Vol 287 ◽  
pp. 225-249 ◽  
Author(s):  
Philip Hall

The effect of an unsteady shear flow on the planform of convection in a Boussinesq fluid heated from below is investigated. In the absence of the shear flow it is well-known, if non-Boussinesq effects can be neglected, that convection begins in the form of a supercritical bifurcation to rolls. Subcritical convection in the form of say hexagons can be induced by non-Boussinesq behaviour which destroys the symmetry of the basic state. Here it is found that the symmetry breaking effects associated with an unsteady shear flow are not sufficient to cause subcritical convection so the problem reduces to the determination of how the orientations of roll cells are modified by an unsteady shear flow. Recently Kelly & Hu (1993) showed that such a flow has a significant stabilizing effect on the linear stability problem and that, for a wide range of Prandtl numbers, the effect is most pronounced in the low-frequency limit. In the present calculation it is shown that the stabilizing effects found by Kelly & Hu (1993) do survive for most frequencies when nonlinear effects and imperfections are taken into account. However a critical size of the frequency is identified below which the Kelly & Hu (1993) conclusions no longer carry through into the nonlinear regime. For frequencies of size comparable with this critical size it is shown that the convection pattern changes in time. The cell pattern is found to be extremely complicated and straight rolls exist only for part of a period.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
D. Keith Walters ◽  
Davor Cokljat

An eddy-viscosity turbulence model employing three additional transport equations is presented and applied to a number of transitional flow test cases. The model is based on the k-ω framework and represents a substantial refinement to a transition-sensitive model that has been previously documented in the open literature. The third transport equation is included to predict the magnitude of low-frequency velocity fluctuations in the pretransitional boundary layer that have been identified as the precursors to transition. The closure of model terms is based on a phenomenological (i.e., physics-based) rather than a purely empirical approach and the rationale for the forms of these terms is discussed. The model has been implemented into a commercial computational fluid dynamics code and applied to a number of relevant test cases, including flat plate boundary layers with and without applied pressure gradients, as well as a variety of airfoil test cases with different geometries, Reynolds numbers, freestream turbulence conditions, and angles of attack. The test cases demonstrate the ability of the model to successfully reproduce transitional flow behavior with a reasonable degree of accuracy, particularly in comparison with commonly used models that exhibit no capability of predicting laminar-to-turbulent boundary layer development. While it is impossible to resolve all of the complex features of transitional and turbulent flows with a relatively simple Reynolds-averaged modeling approach, the results shown here demonstrate that the new model can provide a useful and practical tool for engineers addressing the simulation and prediction of transitional flow behavior in fluid systems.


1998 ◽  
Vol 370 ◽  
pp. 101-147 ◽  
Author(s):  
F. M. NAJJAR ◽  
S. BALACHANDAR

The separated flow past a zero-thickness flat plate held normal to a free stream at Re=250 has been investigated through numerical experiments. The long-time signatures of the drag and lift coefficients clearly capture a low-frequency unsteadiness with a period of approximately 10 times the primary shedding period. The amplitude and frequency of drag and lift variations during the shedding process are strongly modulated by the low frequency. A physical interpretation of the low-frequency behaviour is that the flow gradually varies between two different regimes: a regime H of high mean drag and a regime L of low mean drag. It is observed that in regime H the shear layer rolls up closer to the plate to form coherent spanwise vortices, while in regime L the shear layer extends farther downstream and the rolled-up Kármán vortices are less coherent. In the high-drag regime three-dimensionality is characterized by coherent Kármán vortices and reasonably well-organized streamwise vortices connecting the Kármán vortices. With a non-dimensional spanwise wavelength of about 1.2, the three-dimensionality in this regime is reminiscent of mode-B three-dimensionality. It is observed that the high degree of spanwise coherence that exists in regime H breaks down in regime L. Based on detailed numerical flow visualization we conjecture that the formation of streamwise and spanwise vortices is not in perfect synchronization and that the low-frequency unsteadiness is the result of this imbalance (or phase mismatch).


2000 ◽  
Vol 123 (4) ◽  
pp. 766-773 ◽  
Author(s):  
S. Hubbard ◽  
A. P. Dowling

A theory is developed to describe low-frequency acoustic waves in the complicated diffuser/combustor geometry of a typical industrial gas turbine. This is applied to the RB211-DLE geometry to give predictions for the frequencies of the acoustic resonances at a range of operating conditions. The main resonant frequencies are to be found around 605 Hz (associated with the plenum) and around 461 Hz and 823 Hz (associated with the combustion chamber), as well as one at around 22 Hz (a bulk mode associated with the system as a whole). The stabilizing effects of a Helmholtz resonator, which models damping through nonlinear effects, are included, together with effects of coupled pressure waves in the fuel supply system.


2017 ◽  
Vol 823 ◽  
pp. 617-657 ◽  
Author(s):  
Vito Pasquariello ◽  
Stefan Hickel ◽  
Nikolaus A. Adams

We analyse the low-frequency dynamics of a high Reynolds number impinging shock-wave/turbulent boundary-layer interaction (SWBLI) with strong mean-flow separation. The flow configuration for our grid-converged large-eddy simulations (LES) reproduces recent experiments for the interaction of a Mach 3 turbulent boundary layer with an impinging shock that nominally deflects the incoming flow by $19.6^{\circ }$. The Reynolds number based on the incoming boundary-layer thickness of $Re_{\unicode[STIX]{x1D6FF}_{0}}\approx 203\times 10^{3}$ is considerably higher than in previous LES studies. The very long integration time of $3805\unicode[STIX]{x1D6FF}_{0}/U_{0}$ allows for an accurate analysis of low-frequency unsteady effects. Experimental wall-pressure measurements are in good agreement with the LES data. Both datasets exhibit the distinct plateau within the separated-flow region of a strong SWBLI. The filtered three-dimensional flow field shows clear evidence of counter-rotating streamwise vortices originating in the proximity of the bubble apex. Contrary to previous numerical results on compression ramp configurations, these Görtler-like vortices are not fixed at a specific spanwise position, but rather undergo a slow motion coupled to the separation-bubble dynamics. Consistent with experimental data, power spectral densities (PSD) of wall-pressure probes exhibit a broadband and very energetic low-frequency component associated with the separation-shock unsteadiness. Sparsity-promoting dynamic mode decompositions (SPDMD) for both spanwise-averaged data and wall-plane snapshots yield a classical and well-known low-frequency breathing mode of the separation bubble, as well as a medium-frequency shedding mode responsible for reflected and reattachment shock corrugation. SPDMD of the two-dimensional skin-friction coefficient further identifies streamwise streaks at low frequencies that cause large-scale flapping of the reattachment line. The PSD and SPDMD results of our impinging SWBLI support the theory that an intrinsic mechanism of the interaction zone is responsible for the low-frequency unsteadiness, in which Görtler-like vortices might be seen as a continuous (coherent) forcing for strong SWBLI.


Sign in / Sign up

Export Citation Format

Share Document