Sound Absorption Characteristic of Pseudostochastic Diffusers

1995 ◽  
Vol 2 (2) ◽  
pp. 455-460
Author(s):  
Shengwo Sheng

Sound absorption phenomenon of pseudostochastic diffusers was investigated in this paper. The mechanism of high absorption at low frequency was explained from the point view of energy dissipation due to nonlinear effects.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yufan Tang ◽  
Shuwei Ren ◽  
Han Meng ◽  
Fengxian Xin ◽  
Lixi Huang ◽  
...  

Abstract A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.


2013 ◽  
Vol 465-466 ◽  
pp. 1044-1048 ◽  
Author(s):  
Najibah A. Latif ◽  
Anika Zafiah M. Rus ◽  
M. Khairul Zaimy A. Ghani

Waste cooking oils are problematic disposal especially in the developed countries. In this paper, waste cooking oil is used as raw material to produce foam. The purpose of the study is to develop the high density solid biopolymer (HDB) by using hot compression moulding technique based on flexible and rigid crosslinking agents. Physical properties such as Scanning Electron Microscope (SEM) and density of HDB were examined. The acoustic study of HDB sandwich layups of flexible (F) or rigid (R) has been measured using an impedance tube test according ASTM E1050 standard up to four maximum sandwich lay ups of F and R HDB in different arrangement. It was revealed that the arrangement sandwich layups of FRRF HDB sandwich gives the lowest sound absorption coefficients. The resonance frequency for RFR, FRF and FRRF were shifted to the left except for RFFR. The highest increment was 35.7 %, observed from RFR compared to the three layers of sandwich HDB. For the conclusion, RFR HDB showed that could absorb more sound, thus having higher noise reduction coefficient (NRC) than the other sandwich layups HDB at low frequency.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Binxia Yuan ◽  
Xinyi Fang ◽  
Jianben Liu ◽  
Yan Liu ◽  
Rui Zhu

At present, the scale of China’s power grid is becoming larger and larger, and the control of low-frequency noise in substations (especially for transformers) is very important. The sound-absorbing materials have become one of the important ways to control low-frequency noise. The single polyurethane material cannot satisfy the requirements for reducing low-frequency noise, so it is very necessary to study its composite with other materials. In the paper, the flexible polyurethane foam and Al2O3 nanoparticle composites were obtained by the impregnation method. The method was simple, safe, and easy to control. The morphology and sound absorption coefficient of the foam materials before and after filling were analyzed. Single-hole acoustic cavity models of PU and Al2O3-PU composite were established through the finite element. The absorption and dissipation process of sound pressure for single hole was studied to understand the energy dissipation process. Meanwhile, through studying acoustic energy storage and acoustic energy dissipation, the loss factor of a single hole was obtained, which can predict the change rule of the sound absorption coefficient for PU foam and Al2O3-PU.


Author(s):  
Qingxuan Liang ◽  
Yutao Wu ◽  
Peiyao Lv ◽  
Jin He ◽  
Fuyin Ma ◽  
...  

Author(s):  
Vinayaravi R ◽  
Jayaraj Kochupillai ◽  
Kumaresan D ◽  
Asraff A. K

Abstract The objective of this paper is to investigate how higher damping is achieved by energy dissipation as high-frequency vibration due to the addition of impact mass. In an impact damper system, collision between primary and impact masses cause an exchange of momentum resulting in dissipation of energy. A numerical model is developed to study the dynamic behaviour of an impact damper system using a MDOF system with Augmented Lagrangian Multiplier contact algorithm. Mathematical modelling and numerical simulations are carried out using ANSYS FEA package. Studies are carried out for various mass ratios subjecting the system to low-frequency high amplitude excitation. Time responses obtained from numerical simulations at fundamental mode when the system is excited in the vicinity of its fundamental frequency are validated by comparing with experimental results. Magnification factor evaluated from numerical simulation results is comparable with those obtained from experimental data. The transient response obtained from numerical simulations is used to study the behaviour of first three modes of the system excited in vicinity of its fundamental frequency. It is inferred that dissipation of energy is a main reason for achieving higher damping for an impact damper system in addition to being transformed to heat, sound, and/or those required to deform a body.


2021 ◽  
pp. 2150319
Author(s):  
Li Bo Wang ◽  
Cheng Zhi Ma ◽  
Jiu Hui Wu ◽  
Chong Rui Liu

The underwater acoustic siphon effect is proposed in this work, which aims to reveal the basic physical mechanism of high-efficiency sound absorption in meta-structures composed of multiple detuned units. Furthermore, the influence of the area ratio on the underwater acoustic siphon effect is then investigated by finite element simulation (FES) and theoretical calculation. On this basis, a meta-structure with the maximum absorption coefficient of almost 100% and average absorption coefficient of 80% at 600–1400 Hz is achieved. The underwater acoustic siphon effect could provide a better understanding of high-efficiency sound absorption and offer a new perspective in controlling underwater noises.


2018 ◽  
Vol 89 (16) ◽  
pp. 3342-3361 ◽  
Author(s):  
Tao Yang ◽  
Ferina Saati ◽  
Kirill V Horoshenkov ◽  
Xiaoman Xiong ◽  
Kai Yang ◽  
...  

This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%.


Sign in / Sign up

Export Citation Format

Share Document