absorption characteristic
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 47)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 2160 (1) ◽  
pp. 012064
Author(s):  
Nan Sun ◽  
Shuai Wang ◽  
Kaifa Zhou ◽  
Wenyi Ma ◽  
Bohao Xu

Abstract As a representative of metamaterials, negative Poisson’s ratio (NPR) material possesses special mechanical properties such as expansion, negative compression ratio and so forth. As a result, it is widely used in the fields of vehicles, aerospace, et al. In this paper, a novel space orthogonal concave honeycomb structure (OC) is designed based on traditional concave honeycomb structure (CHS). In order to explore the influence rule of OC structure on the deformation and energy absorption capacity of crash box under low-speed collision, mechanical analysis and parameter research on OC structure are conducted through quasi-static compression test and numerical simulation. The results suggest that the finite element results of OC structure fit well with the experimental results, and the FEM is highly credible. In addition, the novel OC sandwich structure can effectively enhance the deformation capacity and improve the energy absorption performance of the crash box. When the wall thickness ? of OC structure is 1mm and angle ? is 50°, the deformation and energy absorption capacity of the crash box increased by 25.6% and 19.3% respectively.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4032
Author(s):  
Shu-Yu Jhou ◽  
Ching-Chi Hsu ◽  
Jui-Chia Yeh

This paper proposes a dynamic drop weight impact simulation to predict the impact response of 3D printed polymeric sandwich structures using an explicit finite element (FE) approach. The lattice cores of sandwich structures were based on two unit cells, a body-centred cubic (BCC) and an edge-centred cubic (ECC). The deformation and the peak acceleration, referred to as the g-max score, were calculated to quantify their shock absorption characteristic. For the FE results verification, a falling mass impact test was conducted. The FE results were in good agreement with experimental measurements. The results suggested that the strut diameter, strut length, number and orientation, and the apparent material stiffness of the lattice cores had a significant effect on their deformation behavior and shock absorption capability. In addition, the BCC lattice core with a thinner strut diameter and low structural height might lead to poor shock absorption capability caused by structure collapse and border effect, which could be improved by increasing its apparent material stiffness. This dynamic drop impact simulation process could be applied across numerous industries such as footwear, sporting goods, personal protective equipment, packaging, or biomechanical implants.


2021 ◽  
Author(s):  
Yani Zhang ◽  
Zhuo-ying Song ◽  
Dun Qiao ◽  
Xiaohui Li ◽  
Zhe Guang ◽  
...  

Abstract 2D van der Waals materials are crystals composed of atomic layers, which have atomic thickness scale layers and rich distinct properties, including ultrafast optical response, surface effects, light-mater interaction, small size effects, quantum effects and macro quantum tunnel effects. With the exploration of saturable absorption characteristic of 2D van der Waals materials, a series of potential applications of 2D van der Waals materials as high threshold, broadband and fast response saturable absorbers (SAs) in ultrafast photonics have been proposed and confirmed. Herein, the photoelectric characteristics, nonlinear characteristic measurement technique of 2D van der Waals materials and the preparation technology of SAs are systematically described. Furthermore, the ultrafast pulsed fiber lasers based on classical 2D van der Waals materials including graphene, Transition Metal Chalcogenides (TMCs), Topological Insulators (TIs) and Black Phosphorus (BP) have been fully summarized and analyzed. On this basis, opportunities and directions in this field, as well as the research results of ultrafast pulsed fiber lasers based on the latest 2D van der Waals materials (such as PbO, FePSe3, graphdiyne, bismuthene, Ag2S and MXene etc.), are reviewed and summarized.


2021 ◽  
Vol 13 (21) ◽  
pp. 12144
Author(s):  
Yun Xue ◽  
Yi-Min Wen ◽  
Zhong-Man Duan ◽  
Wei Zhang ◽  
Fen-Liang Liu

The envelope removal method has the advantage of suppressing the background spectrum and expanding the weak absorption characteristic information. However, for second-class water bodies with a relatively complex water quality, there are few studies on the inversion of chlorophyll a (Chl-a) concentration in water bodies that consider the spectral absorption characteristics. In addition, the current research on the inversion of the Chl-a concentration was carried out under the condition of sample concentration equilibrium. For areas with a highly variable Chl-a concentration, it is still challenging to establish a highly applicable and accurate Chl-a concentration inversion model. Taking Dongting Lake in China as an example, this study used high-concentration samples and spectral absorption characteristics to invert the Chl-a concentration. The decap method was used to preprocess the high-concentration samples with large deviations, and the envelope removal method was used to extract the spectral absorption characteristic parameters of the water body. On the basis of the correlation analysis between the water Chl-a concentration and the spectral absorption characteristics, the water Chl-a concentration was inverted. The results showed the following: (1) The bands that were significantly related to the Chl-a concentration and had a large correlation coefficient were mainly located in the three absorption valleys (400–580, 580–650, and 650–710 nm) of the envelope removal curve. Moreover, the correlation between the Chl-a concentration and the absorption characteristic parameters at 650–710 nm was better than that at 400–580 nm and 580–650 nm. (2) Compared with the conventional inversion model, the uncapped inversion model had a higher RP2 and a lower RMSEP, and was closer to the predicted value of the 1:1 line. Moreover, the performance of the uncapped inversion model was better than that of the conventional inversion model, indicating that the uncapped method is an effective preprocessing method for high-concentration samples with large deviations. (3) The predictive capabilities of the ER_New model were significantly better than those of the R_New model. This shows that the envelope removal method can significantly amplify the absorption characteristics of the original spectrum, which can significantly improve the performance of the prediction model. (4) From the inversion models for the absorption characteristic parameters, the prediction models of A650–710 nm_New and D650–710 nm_New exhibited the best performance. The three combined models (A650–710 nm&D650–710 nm_New, A650–710 nm&NI_New, A650–710 nm&DI_New) also demonstrated good predictive capabilities. This demonstrates the feasibility of using the spectral absorption feature to retrieve the chlorophyll concentration.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 375
Author(s):  
Amir Maghoul ◽  
Ali Rostami ◽  
Nilojan Gnanakulasekaran ◽  
Ilangko Balasingham

Graphene material, due to its unique conductivity and transparency properties, is utilized extensively in designing tunable terahertz perfect absorbers. This paper proposes a framework to design a tunable terahertz perfect absorber based on fractal triangle-shaped graphene layers embedded into dielectric substrates with the potential for spectral narrowing and widening of the absorption response without the need for geometric manipulation. In this way, the absorption cross-section spectra of the suggested configurations are achieved over the absorption band. First, the defection impact on the single-layer fractal triangle-shaped graphene structure inserted in insulators of the absorber is evaluated. Then, a flexible tunability of the absorbance’s peak is indicated by controlling the Fermi energy. By stacking fractal graphene sheets as a double graphene layer configuration in both the same and cross-states positioning, it is demonstrated that the absorption characteristics can be switched at 6–8 THz with a stronger amplitude, and 16–18 THz with a lower intensity. The impact of changing the Fermi potentials of embedded graphene layers is yielded, resulting in a plasmonic resonance shift and a significant broadening of the absorption bandwidth of up to five folds. Following, the absorption spectra related to the fractal triangle-shaped structures consist of a multi-stage architecture characterized by a spectral response experiencing a multiband absorbance rate and an absorption intensity of over 8 × 106 nm2 in a five-stage perfect absorber. Ultimately, the variations of the absorbance parameter and plasmonic mode under rotating the graphene sheet are explored for single and double fractal triangle-shaped perfect configurations on the absorption band. The presented mechanism demonstrates the tunability of the absorption spectrum in terms of narrowing or broadening and switching the plasmonic resonance by configuring multi-stage structures that can employ a broad range of applications for sensory devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2137
Author(s):  
Jianying Jing ◽  
Kun Liu ◽  
Junfeng Jiang ◽  
Tianhua Xu ◽  
Shuang Wang ◽  
...  

A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on the sensor surface. The near-field electron coupling between the localized surface plasmon and the long-range surface plasmon leads to a significant perturbation of the evanescent field. The large penetration depth and the long propagation distance of the long-range surface plasmonic waves facilitate the LR-SPR sensor in the detection of biological macromolecules. The unique light absorption characteristic of the nanocomposite material in the sensor provides the in situ self-compensation for the disturbance. Therefore, besides the inherent advantages of optical fiber sensors, the developed biosensor can realize the detection of biomolecules with high sensitivity, low LOD and high accuracy and reliability. Experimental results demonstrate that the LOD of the biosensor is as low as 0.11 μg/mL in the detection of the phosphate-buffered saline sample, and the spike-and-repetition rate is 105.56% in the detection of the real serum sample, which partly shows the practicability of the biosensor. This indicates that the LR-SPR biosensor provides better response compared with existing similar sensors and can be regarded as a valuable method for biochemical analysis and disease detection.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4652
Author(s):  
Luming Wang ◽  
Yanhui Liu ◽  
Lang Yang ◽  
Nan Xu ◽  
Shichun Zhao

The energy absorption characteristic of steel tube material and concrete material is an important indicator to reflect the impact resistance of circular concrete-filled steel tubular (CFST) members. In order to efficiently simulate the material energy absorption of the steel tube and concrete under lateral impact, a nonlinear finite element model considering the material strain rate of the circular CFST member was established and validated based on the drop weight tests. Then, the energy absorption mechanism of circular CFST members subjected to lateral impact was investigated including the revelation of the energy absorption process and the determination of the energy absorption distribution for the steel tube material and concrete material, which are obtained respectively based on the comprehensive analysis of dynamic response and innovative establishment of the segmented numerical model. In addition, the influence of impact momentum on energy absorption process and the effect of impact location on energy absorption distribution are further carried out. The observations of this investigation can provide reference for the anti-impact design and damage reinforcement of circular CFST members subjected to lateral impact.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Zhiqiang Xie ◽  
Mabao Liu

Reinforcing and toughening materials with light quality in engineered structures remains a challenge. In the biological tissues of numerous animal and plant species, efficient strategies have evolved to construct structures that have excellent mechanical properties. As a kind of biological structure with high-strength fiber, beetle elytron not only provides protection function for beetles, but also makes beetles light enough to obtain good flight ability. Because of these advantages of inner fibrous structure of elytron, the bionic investigation of beetle elytron has gradually become one of the research focuses in civil engineering and automobile anti-collision fields. In the present work, the honeycomb and tubes composed of fiber in the beetle elytra was analyzed, and a variety of bionic thin-walled honeycomb structures with curved hollow tubes were designed and modeled. The energy absorption ability of the bionic honeycomb structures with different types of tubes under impact loading were calculated by finite element software. The internal energy values and collapse processes of bionic structures were compared and analyzed at different crushing displacements. The parameter study, including wall thickness and impact angle, was carried out in the collapse time range from 0 ms to 8 ms. These results could be applied in developing crush-resistant materials in the field of automotive passive safety.


Author(s):  
M. B. Abdullahi ◽  
M. H. Ali

Abstract Background Recent advances in material science and electronics led to the rapid development of communication devices and radar detection techniques resulting in an ever-increasing demand for improved stealth performance of air vehicles during scouts. Absorber design employing metastructure concept has recently become a popular approach to improving radar stealth performance. Metastructure permits the realization of desired absorption characteristics by careful design of geometrical structures and material compositions. In this study, a metastructure designed based on graphite SLS composite for radar absorption has been demonstrated. The unit cell of the proposed structure is simulated by COMSOL Multiphysics to determine the frequency-dependent absorption characteristic of the structure. It is fabricated by using a low-cost selective laser sintering technique of additive manufacturing technology. Results The prototype, while measured, shows effective absorption bandwidth of 1.04 GHz that is in reasonable agreement with the simulated response of 2.08 GHz. The optimized structure exhibits ≤ − 10 dB reflectivity within a broad frequency range extending from 7.60 GHz to 18.00 GHz under normal incidence in both TE and TM polarizations. Furthermore, the absorption performance under different polarizations and incident angles has been investigated. Results indicate that the absorber displays polarization indifference and exhibits a wide-angle of incidence tolerance of up to 45° in TE polarization and 30° in TM polarizations. Conclusion In this paper, the feasibility of using graphite SLS material to design and 3D print a metastructure design for radar absorbing has been established as confirmed by the simulation and the measurement results. The advantages of low cost, ultra-broad operating band, wide-angle of incidence feature, and polarization insensitivity qualifies the proposed absorber for stealth and electromagnetic shielding applications.


Sign in / Sign up

Export Citation Format

Share Document