A Comparison of Alternative Approaches for the Synthetic Generation of a Wind Speed Time Series

1991 ◽  
Vol 113 (4) ◽  
pp. 280-289 ◽  
Author(s):  
F. C. Kaminsky ◽  
R. H. Kirchhoff ◽  
C. Y. Syu ◽  
J. F. Manwell

In this paper, alternative approaches for synthetically generating a wind speed time series are discussed. These approaches include: (1) the use of independent values from a specific probability distribution; (2) the use of an algorithm based on the statistical behavior of a one-step Markov chain; (3) the use of an algorithm based on the behavior of a transition probability matrix that describes the next wind speed value statistically as a function of the current wind speed value and the previous wind speed value; (4) the use of Box-Jenkins models; (5) the use of the Shinozuka algorithm; and (6) the use of an embedded Markov chain. The ability of each approach to capture the statistical properties of the desired wind speed time series is discussed. In this context the statistical properties of interest are the probability distribution of the wind speed values, the autocorrelation function of the wind speed values, and the spectral density of the wind speed values.

1996 ◽  
Vol 33 (03) ◽  
pp. 623-629 ◽  
Author(s):  
Y. Quennel Zhao ◽  
Danielle Liu

Computationally, when we solve for the stationary probabilities for a countable-state Markov chain, the transition probability matrix of the Markov chain has to be truncated, in some way, into a finite matrix. Different augmentation methods might be valid such that the stationary probability distribution for the truncated Markov chain approaches that for the countable Markov chain as the truncation size gets large. In this paper, we prove that the censored (watched) Markov chain provides the best approximation in the sense that, for a given truncation size, the sum of errors is the minimum and show, by examples, that the method of augmenting the last column only is not always the best.


1992 ◽  
Vol 22 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Heikki Bonsdorff

AbstractUnder certain conditions, a Bonus-Malus system can be interpreted as a Markov chain whose n-step transition probabilities converge to a limit probability distribution. In this paper, the rate of the convergence is studied by means of the eigenvalues of the transition probability matrix of the Markov chain.


1970 ◽  
Vol 7 (02) ◽  
pp. 291-303 ◽  
Author(s):  
M.S. Ali Khan

This paper considers a finite dam fed by inputs forming a Markov chain. Relations for the probability of first emptiness before overflow and with overflow are obtained and their probability generating functions are derived; expressions are obtained in the case of a three state transition probability matrix. An equation for the probability that the dam ever dries up before overflow is derived and it is shown that the ratio of these probabilities is independent of the size of the dam. A time dependent formula for the probability distribution of the dam content is also obtained.


1970 ◽  
Vol 7 (2) ◽  
pp. 291-303 ◽  
Author(s):  
M.S. Ali Khan

This paper considers a finite dam fed by inputs forming a Markov chain. Relations for the probability of first emptiness before overflow and with overflow are obtained and their probability generating functions are derived; expressions are obtained in the case of a three state transition probability matrix. An equation for the probability that the dam ever dries up before overflow is derived and it is shown that the ratio of these probabilities is independent of the size of the dam. A time dependent formula for the probability distribution of the dam content is also obtained.


1965 ◽  
Vol 5 (2) ◽  
pp. 285-287 ◽  
Author(s):  
R. M. Phatarfod

Consider a positive regular Markov chain X0, X1, X2,… with s(s finite) number of states E1, E2,… E8, and a transition probability matrix P = (pij) where = , and an initial probability distribution given by the vector p0. Let {Zr} be a sequence of random variables such that and consider the sum SN = Z1+Z2+ … ZN. It can easily be shown that (cf. Bartlett [1] p. 37), where λ1(t), λ2(t)…λ1(t) are the latent roots of P(t) ≡ (pijethij) and si(t) and t′i(t) are the column and row vectors corresponding to λi(t), and so constructed as to give t′i(t)Si(t) = 1 and t′i(t), si(o) = si where t′i(t) and si are the corresponding column and row vectors, considering the matrix .


1988 ◽  
Vol 1 (3) ◽  
pp. 197-222
Author(s):  
Ram Lal ◽  
U. Narayan Bhat

A random walk describes the movement of a particle in discrete time, with the direction and the distance traversed in one step being governed by a probability distribution. In a correlated random walk (CRW) the movement follows a Markov chain and induces correlation in the state of the walk at various epochs. Then, the walk can be modelled as a bivariate Markov chain with the location of the particle and the direction of movement as the two variables. In such random walks, normally, the particle is not allowed to stay at one location from one step to the next. In this paper we derive explicit results for the following characteristics of the CRW when it is allowed to stay at the same location, directly from its transition probability matrix: (i) equilibrium solution and the fast passage probabilities for the CRW restricted on one side, and (ii) equilibrium solution and first passage characteristics for the CRW restricted on bath sides (i.e., with finite state space).


2014 ◽  
Vol 580-583 ◽  
pp. 436-439 ◽  
Author(s):  
Fei Xu ◽  
Wen Xiong Xu ◽  
Ke Wang

A new displacement time series predicting model was proposed by combining the Support Vector Machines and the Markov Chain, which was named as Support Vector Machines and Markov Chain (SVM-MC) model. Through studying the measured displacement, SVM optimized by particle swarm optimization (PSO) was used to forecast the trend of macro development in roll. Markov chain was applied to compute State Transition Probability Matrix. By classifying system state and calculating absolute error and relative error between measured value and SVM fitting value, the predicting results are improved. The model was used on predicting displacement time series of a high slope of a permanent lock. The engineering case studies indicated that the model was scientific and reliable, and there was engineering practical value for displacement time series forecasting.


1996 ◽  
Vol 33 (3) ◽  
pp. 623-629 ◽  
Author(s):  
Y. Quennel Zhao ◽  
Danielle Liu

Computationally, when we solve for the stationary probabilities for a countable-state Markov chain, the transition probability matrix of the Markov chain has to be truncated, in some way, into a finite matrix. Different augmentation methods might be valid such that the stationary probability distribution for the truncated Markov chain approaches that for the countable Markov chain as the truncation size gets large. In this paper, we prove that the censored (watched) Markov chain provides the best approximation in the sense that, for a given truncation size, the sum of errors is the minimum and show, by examples, that the method of augmenting the last column only is not always the best.


Sign in / Sign up

Export Citation Format

Share Document