Turbulent Rotating Rayleigh–Benard Convection: Spatiotemporal and Statistical Study

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
A. Husain ◽  
M. F. Baig ◽  
H. Varshney

The present study involves a 3D numerical investigation of rotating Rayleigh–Benard convection in a large aspect-ratio (8:8:1) rectangular enclosure. The rectangular cavity is rotated about a vertical axis passing through the center of the cavity. The governing equations of mass, momentum, and energy for a frame rotating with the enclosure, subject to generalized Boussinesq approximation applied to the body and centrifugal force terms, have been solved on a collocated grid using a semi-implicit finite difference technique. The simulations have been carried out for liquid metal flows having a fixed Prandtl number Pr=0.01 and fixed Rayleigh number Ra=107 while rotational Rayleigh number Raw and Taylor number Ta are varied through nondimensional rotation rate (Ω) ranging from 0 to 104. Generation of large-scale structures is observed at low-rotation (Ω=10) rates though at higher-rotation rates (Ω=104) the increase in magnitude of Coriolis forces leads to redistribution of buoyancy-induced vertical kinetic energy to horizontal kinetic energy. This brings about inhibition of vertical fluid transport, thereby leading to reduced vertical heat transfer. The magnitude of rms velocities remains unaffected with an increase in Coriolis forces from Ω=0 to 104. An increase in rotational buoyancy (Raw), at constant rotation rate (Ω=104), on variation in Raw/Ta from 10−3 to 10−2 results in enhanced breakup of large-scale structures with a consequent decrease in rms velocities but with negligible reduction in vertical heat transport.

2002 ◽  
Vol 469 ◽  
pp. 1-12 ◽  
Author(s):  
A. S. FLEISCHER ◽  
R. J. GOLDSTEIN

High-pressure gases are used to study high-Rayleigh-number Rayleigh–Bénard convection in cylindrical horizontal enclosures. The Nusselt–Rayleigh heat transfer relationship is investigated for 1×109 < Ra < 1.7×1012. Schlieren video images of the flow field are recorded through optical viewports in the pressure vessel. The data set is well correlated by Nu = 0.071Ra0.328. The schlieren results confirm the existence of a large-scale flow that periodically interrupts the ascending and descending plumes. The intensity of both the plumes and the large-scale flow increases with Rayleigh number.


2019 ◽  
Vol 877 ◽  
pp. 922-954 ◽  
Author(s):  
Andrés Castillo-Castellanos ◽  
Anne Sergent ◽  
Bérengère Podvin ◽  
Maurice Rossi

We consider direct numerical simulations of turbulent Rayleigh–Bénard convection inside two-dimensional square cells. For Rayleigh numbers $Ra=10^{6}$ to $Ra=5\times 10^{8}$ and Prandtl numbers $Pr=3$ and $Pr=4.3$, two types of flow regimes are observed intermittently: consecutive flow reversals (CR), and extended cessations (EC). For each regime, we combine proper orthogonal decomposition (POD) and statistical tools on long-term data to characterise the dynamics of large-scale structures. For the CR regime, centrosymmetric modes are dominant and display a coherent dynamics, while non-centrosymmetric modes fluctuate randomly. For the EC regime, all POD modes follow Poissonian statistics and a non-centrosymmetric mode is dominant. To explore further the differences between the CR and EC regimes, an analysis based on a cluster partition of the POD phase space is proposed. This data-driven approach confirms the successive mechanisms of the generic reversal cycle in CR as proposed in Castillo-Castellanos et al. (J. Fluid Mech., vol. 808, 2016, pp. 614–640). However, these mechanisms may take one of multiple paths in the POD phase space. Inside the EC regime, this approach reveals the presence of two types of coherent time sequences (weak reversals and actual cessations) and more rarely intense plume crossings. Finally, we analyse within a range of Rayleigh numbers up to turbulent flow, the relation between dynamical regimes and the POD energetic contents as well as the residence time in each cluster.


2008 ◽  
Vol 607 ◽  
pp. 119-139 ◽  
Author(s):  
DENIS FUNFSCHILLING ◽  
ERIC BROWN ◽  
GUENTER AHLERS

Measurements over the Rayleigh-number range 108 ≲ R ≲ 1011 and Prandtl-number range 4.4≲σ≲29 that determine the torsional nature and amplitude of the oscillatory mode of the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection are presented. For cylindrical samples of aspect ratio Γ=1 the mode consists of an azimuthal twist of the near-vertical LSC circulation plane, with the top and bottom halves of the plane oscillating out of phase by half a cycle. The data for Γ=1 and σ=4.4 showed that the oscillation amplitude varied irregularly in time, yielding a Gaussian probability distribution centred at zero for the displacement angle. This result can be described well by the equation of motion of a stochastically driven damped harmonic oscillator. It suggests that the existence of the oscillations is a consequence of the stochastic driving by the small-scale turbulent background fluctuations of the system, rather than a consequence of a Hopf bifurcation of the deterministic system. The power spectrum of the LSC orientation had a peak at finite frequency with a quality factor Q≃5, nearly independent of R. For samples with Γ≥2 we did not find this mode, but there remained a characteristic periodic signal that was detectable in the area density ρp of the plumes above the bottom-plate centre. Measurements of ρp revealed a strong dependence on the Rayleigh number R, and on the aspect ratio Γ that could be represented by ρp ~ Γ2.7±0.3. Movies are available with the online version of the paper.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Sign in / Sign up

Export Citation Format

Share Document