Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming

2009 ◽  
Vol 131 (1) ◽  
Author(s):  
Hui Hong ◽  
Qibin Liu ◽  
Hongguang Jin

In this paper, a novel approach of middle-temperature solar hydrogen production using methanol steam reforming is proposed. It can be carried out at around 200–300°C, much lower than the temperatures of other solar thermochemical hydrogen production. For the realization of the proposed solar hydrogen production, solar experiments are investigated in a modified 5 kW solar receiver/reactor with one-tracking parabolic trough concentrators. The feature of significantly upgrading the energy level from lower-grade solar thermal energy to higher-grade chemical energy is experimentally identified. The interaction between the hydrogen yield and the energy-level upgrade of solar thermal energy is clarified. Also, this kind of solar hydrogen production is experimentally compared with methanol decomposition. The preliminarily economic evaluation of the hydrogen production is identified. As a result, in the solar-driven steam reforming, the thermochemical efficiency of solar thermal energy converted into chemical energy reached up to 40–50% under a mean solar flux of 550–700 W/m2, and exceeding 90% of hydrogen production is achieved, with about 70% higher than that of methanol decomposition. The thermochemical performance of solar-driven methanol steam reforming experimentally examined at around 200–300°C for hydrogen production may be competitive with conventional methane reforming. The promising results obtained here indicate that the proposed solar hydrogen production may provide the possibility of a synergetic process of both high production of hydrogen and effective utilization of solar thermal energy at around 200–300°C.

Author(s):  
Hiroshi Kaneko ◽  
Hideyuki Ishihara ◽  
Takao Miura ◽  
Hiromitsu Nakajima ◽  
Noriko Hasegawa ◽  
...  

CeO2-MOx (M = Mn, Fe, Ni, Cu) reactive ceramics, having high melting points and high conductivities of O2−, were synthesized with the combustion method from their nitrates for solar hydrogen production. The prepared CeO2-MOx samples were solid solutions between CeO2 and MOx with the fluorite structure through XRD. Two-step water splitting reactions with CeO2-MOx reactive ceramics proceeded at 1573–1773K for the O2 releasing step and at 1273K for the H2 generation step by irradiation of infrared imaging furnace as a solar simulator. The amounts of O2 evolved in the O2 releasing reaction with CeO2-MOx and CeO2 systems increased with the increase of the reaction temperature. The amounts of H2 evolved in the H2 generation reaction with CeO2-MOx systems except for M = Cu were more than that of CeO2 system after the O2 releasing reaction at the temperatures of 1673 and 1773K. The largest amount of H2 was generated with CeO2-NiO after the O2 releasing reaction at 1573, 1673 and 1773K. The O2 releasing reaction at 1673K and H2 generation reaction at 1273K with CeO2-Fe2O3 were repeated four times with the evolving of O2 (1.3cm3/g-sample) and H2 (2.3cm3/g-sample) gases, respectively. The possibility of solar hydrogen production with CeO2-MOx (M = Mn, Fe, Ni) reactive ceramics system by using concentrated solar thermal energy was suggested.


RSC Advances ◽  
2020 ◽  
Vol 10 (21) ◽  
pp. 12582-12597 ◽  
Author(s):  
Enkhbayar Shagdar ◽  
Bachirou Guene Lougou ◽  
Yong Shuai ◽  
Enkhjin Ganbold ◽  
Ogugua Paul Chinonso ◽  
...  

Integrating solar thermal energy into conventional SRM technology is a promising approach for low-carbon hydrogen production based on fossil fuel in near and midterm.


2010 ◽  
Vol 35 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Jun Sui ◽  
Qibin Liu ◽  
Jianguo Dang ◽  
Dong Guo ◽  
Hongguang Jin ◽  
...  

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Jun Sui ◽  
Jun Ji

Solar thermochemical processes inherently included the conversion of solar thermal energy into chemical energy. In this paper, a new mechanism of upgrading the energy level of solar thermal energy at around 200°C was revealed based on the second law thermodynamics and was then experimentally proven. An expression was derived to describe the upgrading of the energy level from low-grade solar thermal energy to high-grade chemical energy. The resulting equation explicitly reveals the interrelations of energy levels between middle-temperature solar thermal energy and methanol fuel, and identifies the interactions of mean solar flux and the reactivity of methanol decomposition. The proposed mechanism was experimentally verified by using the fabricated 5kW prototype of the receiver∕reactor. The agreement between the theoretical and the experimental results proves the validity of the mechanism for upgrading the energy level of low-grade solar thermal energy by integrating clean synthetic fuel. Moreover, the application of this new middle-temperature solar∕methanol hybrid thermochemical process into a combined cycle is expected to have a net solar-to-electric efficiency of about 27.8%, which is competitive with other solar-hybrid thermal power plants using high-temperature solar thermal energy. The results obtained here indicate the possibility of utilizing solar thermal energy at around 200°C for electricity generation with high efficiency by upgrading the energy level of solar thermal energy, and provide an enhancement to solar thermal power plants with the development of this low-grade solar thermochemical technology in the near future.


2007 ◽  
Vol 129 (4) ◽  
pp. 378-381 ◽  
Author(s):  
Hongguang Jin ◽  
Jun Sui ◽  
Hui Hong ◽  
Zhifeng Wang ◽  
Danxing Zheng ◽  
...  

This paper manufactured an original middle-temperature solar receiver/reactor prototype, positioned along the focal line of one-axis parabolic trough concentrator, representing the development of a new kind of solar thermochemical technology. A 5kW prototype solar reactor at around 200–300°C, which is combined with a linear receiver, was originally manufactured. A basic principle of the design of the middle-temperature solar reactor is identified and described. A representative experiment of solar-driven methanol decomposition was carried out. Experimental tests were conducted from 200°C to 300°C under mean solar flux of 300–800W∕m2 and at a given methanol feeding rate of 2.1L∕h. The conversion of methanol decomposition yielded up to 50–95%, and the efficiency of solar thermal energy conversion to chemical energy reached 30–60%. The experimental results obtained here prove that the novel solar receiver/reactor prototype introduced in this paper can provide a promising approach to effectively utilize middle-temperature solar thermal energy by means of solar thermochemical processes.


Sign in / Sign up

Export Citation Format

Share Document