Mechanism of Upgrading Low-Grade Solar Thermal Energy and Experimental Validation

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Jun Sui ◽  
Jun Ji

Solar thermochemical processes inherently included the conversion of solar thermal energy into chemical energy. In this paper, a new mechanism of upgrading the energy level of solar thermal energy at around 200°C was revealed based on the second law thermodynamics and was then experimentally proven. An expression was derived to describe the upgrading of the energy level from low-grade solar thermal energy to high-grade chemical energy. The resulting equation explicitly reveals the interrelations of energy levels between middle-temperature solar thermal energy and methanol fuel, and identifies the interactions of mean solar flux and the reactivity of methanol decomposition. The proposed mechanism was experimentally verified by using the fabricated 5kW prototype of the receiver∕reactor. The agreement between the theoretical and the experimental results proves the validity of the mechanism for upgrading the energy level of low-grade solar thermal energy by integrating clean synthetic fuel. Moreover, the application of this new middle-temperature solar∕methanol hybrid thermochemical process into a combined cycle is expected to have a net solar-to-electric efficiency of about 27.8%, which is competitive with other solar-hybrid thermal power plants using high-temperature solar thermal energy. The results obtained here indicate the possibility of utilizing solar thermal energy at around 200°C for electricity generation with high efficiency by upgrading the energy level of solar thermal energy, and provide an enhancement to solar thermal power plants with the development of this low-grade solar thermochemical technology in the near future.

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Rafael Guédez ◽  
James Spelling ◽  
Björn Laumert

The operation of steam turbine units in solar thermal power plants is very different than in conventional base-load plants. Due to the variability of the solar resource, much higher frequencies of plant start-ups are encountered. This study provides an insight to the influence of thermal energy storage (TES) integration on the typical cycling operation of solar thermal power plants. It is demonstrated that the integration of storage leads to significant reductions in the annual number of turbine starts and is thus beneficial to the turbine lifetime. At the same time, the effects of storage integration on the electricity costs are analyzed to ensure that the designs remain economically competitive. Large storage capacities, can allow the plant to be shifted from a daily starting regime to one where less than 20 plant starts occur annually. Additionally, the concept of equivalent operating hours (EOHs) is used to further analyze the direct impact of storage integration on the maintenance planning of the turbine units.


2012 ◽  
Vol 100 (2) ◽  
pp. 516-524 ◽  
Author(s):  
Doerte Laing ◽  
Carsten Bahl ◽  
Thomas Bauer ◽  
Michael Fiss ◽  
Nils Breidenbach ◽  
...  

Author(s):  
Rafael Guédez ◽  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

The operation of steam turbine units in solar thermal power plants is very different than in conventional base-load plants. Due to the variability of the solar resource, much higher frequencies of plant start-ups are encountered. This study provides an insight to the influence of thermal energy storage integration on the typical cycling operation of solar thermal power plants. It is demonstrated that the integration of storage leads to significant reductions in the annual number of turbine starts and is thus beneficial to the turbine lifetime. At the same time, the effects of storage integration on the electricity costs are analyzed to ensure that the designs remain economically competitive. Large storage capacities, can allow the plant to be shifted from a daily starting regime to one where less than 20 plant starts occur annually. Additionally, the concept of equivalent operating hours is used to further analyze the direct impact of storage integration on the maintenance planning of the turbine units.


2019 ◽  
Vol 12 (1) ◽  
pp. 127 ◽  
Author(s):  
Praveen R. P.

The paper puts forth the design, performance analysis, and optimization of a 100 MWe central receiver solar thermal power plant with thermal energy storage capability, which can be utilized effectively to meet the renewable energy targets of the Kingdom of Saudi Arabia (KSA). In this paper, three representative sites in KSA are selected for analysis as these sites experience an annual average direct normal irradiance (DNI) of more than 5.5 kWh/m2/day. The optimization approach presented in this work aims to arrive at the best possible design parameters that suit a particular location in accordance with its DNI profile. From the analysis, an annual energy of 559.61 GWh can be generated in Yanbu with eight hours of thermal energy storage, 18.19% plant efficiency, and a capacity factor of 61.1%. The central receiver plant in Abha would be able to offer an annual energy of 536.31 GWh with the highest plant efficiency of 18.97% and a capacity factor of 60.7%. The performance of the proposed design in the two locations of Yanbu and Abha fares better when compared to the operational plant data of central receiver plant in Crescent Dunes. Based on the findings, the proposed 100 MWe central receiver Solar thermal power plants can be effectively implemented in KSA to meet the energy demands of the region.


Author(s):  
Hongguang Jin ◽  
Hui Hong ◽  
Jun Ji ◽  
Zhifeng Wang ◽  
Ruixian Cai

In this paper, we have proposed a novel solar–driven combined cycle with solar upgrading of methanol in middle temperature solar collectors, and investigated the effects of integration of solar thermal energy and methanol decomposition on the performance of the proposed cycle. The process of solar upgrading methanol is a catalytically endothermic decomposition reaction and proceeds in a range of 130–250° C. As a result, the proposed cycle has a breakthrough performance, with net solar–to–electric efficiency of 32.93% at the collector temperature of 220° C, and the turbine inlet temperature of 1062° C, superior to that of the present advanced cycle (REFOS of 20%). The exergy loss in indirect combustion of methanol proposed here is 7.5 percent points lower than that of the direct combustion. The optimum pressure ratio for thermal efficiency is approximately equal to 14. A key point emphasized here is that the proposed new cycle can utilize middle–temperature solar collector with lower cost. The promising results obtained here indicated that this novel solar–driven combined cycle could make a breakthrough in field of solar thermal power generation through integration of solar thermal energy and effective use of synthetic clean fuel.


Sign in / Sign up

Export Citation Format

Share Document