The Equivalence of the Final Stretch and Crack Tip Opening Angle Criteria for Plane Strain Crack Growth

1981 ◽  
Vol 103 (2) ◽  
pp. 148-150 ◽  
Author(s):  
E. Smith

The equivalence of the final stretch and crack tip opening angle criteria, as applied to the Dugdale-Bilby-Cottrell-Swinden type model for Mode I plane strain crack growth, is demonstrated. This equivalence is independent of the plastic zone size, geometrical parameters, and the stress distribution within the fracture process zone, if the yield stress is sufficiently low and the crack growth resistance is sufficiently high. The results therefore provide further support for the viability of crack tip opening angle as a crack growth characterizing parameter.

Author(s):  
Robert Andrews ◽  
Anton Chterenlikht ◽  
Ian Howard ◽  
John Yates

Recent developments in the control of propagating ductile fractures in gas pipelines have proposed using the Crack Tip Opening Angle (CTOA) as a measure of fracture resistance. This is attractive as it can be related directly to the geometry of the fracturing pipe and also can be implemented easily in finite element models of the propagating fracture process. Current methods of determining CTOA in linepipe have been based on the standard DWTT specimen. This geometry often does not allow a fully slant fracture to develop, and is loaded in bending rather than tension. A novel specimen design has been developed to measure CTOA under quasi-static conditions and applied to a X80 (Grade 555) pipeline steel. The experimental work involved development of the design to ensure crack path stability. CTOA was obtained directly by measurement from video images. The CTOA values dropped from an initially high value to a steady state value of about 8 degrees when fully slant crack growth was achieved. This required crack growth over a distance of about 5 to 12 times the test section thickness. The crack growth was modeled numerically using the Gurson ductile void growth material model. The finite element modeling was able to qualitatively reproduce the crack path instability observed in practice, and the fall of CTOA from the initial high value to a steady state condition. Although further work is required to improve the modeling, the work carried out to date has demonstrated that there is the potential to apply damage mechanics methods to predict the laboratory specimen response and then to model the structural response.


Author(s):  
Gery M. Wilkowski ◽  
David L. Rudland ◽  
Yong-Yi Wang ◽  
David Horsley ◽  
Alan Glover ◽  
...  

Large-diameter gas pipelines typically have a design requirement to ensure that the toughness is sufficient to avoid brittle or ductile fractures from occurring. New pipeline design requirements with richer gases, higher-grade steels, higher operating pressures, and in some cases lower operating temperatures require considerable extrapolation of the current ductile fracture design equations. To obtain a better understanding of ductile fracture arrest toughness, TCPL has funded efforts to assess the steady-state fracture toughness from specimens that can be used in mill applications. This paper reviews past efforts to assess the regions of steady-state ductile crack growth in test specimens, as well as current test results from numerous highly instrumented impact specimens. The new test results were for X52, X70, and X80 linepipe steels, whereas the past efforts were from linepipe steels, aerospace materials, as well as ferritic and austenitic nuclear piping steels. All of these results show that there is a limited region over which the steady-state fracture resistance can be determined. The fracture energy associated with steady-state fracture is the total energy minus; (1) the energy associated with initiation of the crack (including indentation energy and global yielding of the specimen), (2) the transient crack growth from initiation to reaching steady-state fracture, and (3) a non-steady-state fracture region at the end of the test record. Instrumented load versus load-line displacement data were linked to high-speed digital video data of the crack growth, crack-tip-opening angle (within 2 mm of the crack tip), and crack-mouth-opening displacement. These data allowed for comparison of J-R curves and crack-tip-opening angle values during crack growth to help determine the regions of steady-state crack growth. The results from these efforts are an important consideration in the development of a single test specimen method that can be used for determining the ductile fracture resistance of high-strength and high-toughness linepipe steels.


Sign in / Sign up

Export Citation Format

Share Document