scholarly journals Finite Element Analysis in Fluid Dynamics

1980 ◽  
Vol 102 (1) ◽  
pp. 126-127 ◽  
Author(s):  
T. J. Chung ◽  
G. A. Keramidas
2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Zixiang Sun ◽  
John W. Chew ◽  
Nicholas J. Hills ◽  
Konstantin N. Volkov ◽  
Christopher J. Barnes

An efficient finite element analysis/computational fluid dynamics (FEA/CFD) thermal coupling technique has been developed and demonstrated. The thermal coupling is achieved by an iterative procedure between FEA and CFD calculations. Communication between FEA and CFD calculations ensures continuity of temperature and heat flux. In the procedure, the FEA simulation is treated as unsteady for a given transient cycle. To speed up the thermal coupling, steady CFD calculations are employed, considering that fluid flow time scales are much shorter than those for the solid heat conduction and therefore the influence of unsteadiness in fluid regions is negligible. To facilitate the thermal coupling, the procedure is designed to allow a set of CFD models to be defined at key time points/intervals in the transient cycle and to be invoked during the coupling process at specified time points. To further enhance computational efficiency, a “frozen flow” or “energy equation only” coupling option was also developed, where only the energy equation is solved, while the flow is frozen in CFD simulation during the thermal coupling process for specified time intervals. This option has proven very useful in practice, as the flow is found to be unaffected by the thermal boundary conditions over certain time intervals. The FEA solver employed is an in-house code, and the coupling has been implemented for two different CFD solvers: a commercial code and an in-house code. Test cases include an industrial low pressure (LP) turbine and a high pressure (HP) compressor, with CFD modeling of the LP turbine disk cavity and the HP compressor drive cone cavity flows, respectively. Good agreement of wall temperatures with the industrial rig test data was observed. It is shown that the coupled solutions can be obtained in sufficiently short turn-around times (typically within a week) for use in design.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Meri Rahmi ◽  
Delffika Canra ◽  
Suliono Suliono

Valve (katup) sebagai salah satu produk industri, sangat dibutuhkan oleh perusahaan yang bergerak mengontrol aliran cairan untuk efisiensi. Kebutuhan tentang ini banyak digunakan oleh perusahaan makanan, obat-obatan, minuman, pembangkit listrik dan industri minyak dan gas. Tujuan penggunaan valve adalah untuk membatasi dan mengontrol cairan pada kondisi tekanan tinggi. Salah satu katup yang sering digunakan adalah ball valve, yaitu katup dengan tipe gerak memutar. Adanya permintaan ball valve ini, dibutuhkan produk dengan spesifikasi tertentu memiliki rancangan dengan tingkat kekuatan yang baik. Dengan kata lain, produk valve (katup) yang baik, harus memiliki kekuatan yang baik, aman dan sesuai dengan kebutuhan dilakukan pengujian. Penelitian ini bertujuan untuk melakukan analisis terhadap ball valve 4 inch ANSI 300 untuk memastikan katup yang diproduksi sesuai spesifikasi, kuat dan tahan terhadap tekanan fluida. Metode yang digunakan adalah Finite Element Analysis (FEA) dengan software Solidworks. Analisis dilakukan pada ball valve 4 inch ANSI 300 dengan keadaan full open, hall open dan full closed serta dengan pembebanan 725 psi dan 1087.5 psi hasil dari Computational Fluid Dynamics (CFD). Analisis dilakukan pada temperatur -29.50C, 250C dan 4250C. Berdasarkan hasil analisis dengan FEA, dinyatakan bahwa ball valve 4 inch ANSI 300 kuat dan aman untuk digunakan. Nilai faktor keamanan (safety factor), signifikan lebih tinggi dari nilai safety factor minimum yang diizinkan.


Sign in / Sign up

Export Citation Format

Share Document