scholarly journals Discussion: “Transient Heat Flux Measurement in the Combustion Chamber of a Spark Ignition Engine” (Alkidas, A. C., and Myers, J. P., 1982, ASME J. Heat Transfer, 104, pp. 62–67)

1984 ◽  
Vol 106 (2) ◽  
pp. 481-481
Author(s):  
A. H. George
2006 ◽  
Vol 129 (5) ◽  
pp. 609-616 ◽  
Author(s):  
A. R. Noori ◽  
M. Rashidi

The objective of this study is the thermal investigation of a typical spark-ignition (SI) engine combustion chamber with particular focus in determination of the locations where the heat flux and heat transfer coefficient are highest. This subject is an important key for some design purposes especially thermal loading of the piston and cylinder head. To this end, CFD simulation using the KIVA-3V CFD code on a PC platform for flow, combustion, and heat transfer in a typical SI engine has been performed. Some results including the temporal variation of the area-averaged heat flux and heat transfer coefficient on the piston, combustion chamber, and cylinder wall are presented. Moreover, the temporal variation of the local heat transfer coefficient and heat flux along a centerline on the piston as well as a few locations on the combustion chamber wall are shown. The investigation reveals that during the combustion period, the heat flux and heat transfer coefficient vary substantially in space and time due to the transient nature of the flame propagation. For example, during the early stages of the flame impingement on the wall, the heat flux undergoes a rapid increase by as much as around 10 times the preimpingement level. In other words, the initial rise of the heat flux at any location is related to the time of the flame arrival at that location.


Author(s):  
Arash Mohammadi ◽  
Seyed Ali Jazayeri ◽  
Masoud Ziabasharhagh

A computational fluid dynamics code is applied to simulate fluid flow and combustion in a four-stroke single cylinder engine with flat combustion chamber geometry. Heat flux and heat transfer coefficient on the cylinder head, cylinder wall, piston, intake and exhaust valves are determined. Result for a certain condition is compared for total heat transfer coefficient of the cylinder engine with available correlation proposed by experimental measurement in the literature and close agreement is observed. It is observed that the value of heat flux and heat transfer coefficient varies considerably in different positions of the combustion chamber, but the trend with crank angle is almost the same.


2012 ◽  
Vol 152-154 ◽  
pp. 883-888
Author(s):  
Xiang Yu Zhang ◽  
Guo Qiang He ◽  
Pei Jin Liu ◽  
Jiang Li

Accurate information on heat transfer data of combustion products in the solid rocket motor chamber is a crucial prerequisite for the engine thermal protection. A measurement technique was well developed to acquire steady-state heat flux data of two-phase flow and was used successfully in the hostile environment. Experimental heat flux measurement has been obtained with an innovative designed instrument by simulating the flow field of complex charging configuration. The total heat flux of combustion products in the chamber was brought away by the coolant and calculated by its enthalpy rise in this device. The data could be used to analyze the heat transfer phenomena in SRMs and provide boundary condition for establishing insulation erosion model.


Sign in / Sign up

Export Citation Format

Share Document