Heat Flux Measurement Method of Two-Phase Flow in SRM

2012 ◽  
Vol 152-154 ◽  
pp. 883-888
Author(s):  
Xiang Yu Zhang ◽  
Guo Qiang He ◽  
Pei Jin Liu ◽  
Jiang Li

Accurate information on heat transfer data of combustion products in the solid rocket motor chamber is a crucial prerequisite for the engine thermal protection. A measurement technique was well developed to acquire steady-state heat flux data of two-phase flow and was used successfully in the hostile environment. Experimental heat flux measurement has been obtained with an innovative designed instrument by simulating the flow field of complex charging configuration. The total heat flux of combustion products in the chamber was brought away by the coolant and calculated by its enthalpy rise in this device. The data could be used to analyze the heat transfer phenomena in SRMs and provide boundary condition for establishing insulation erosion model.

1998 ◽  
Vol 120 (2) ◽  
pp. 485-491 ◽  
Author(s):  
T. S. Ravigururajan

Microchannel surfaces, often machined to 20 to 1000 μm in width and depth, are employed in high-heat-flux applications. However, a large number of variables, control the two-phase flow heat transfer coefficient. The pressure, the surface heat flux, and the mass flux significantly affect the thermal transport. Experiments were conducted on a setup that was built for testing microchannel heat exchanges. The parameters considered in the study are power input: 20 to 300 W, volume flow rate: 35 to 300 ml/min, quality: 0 to 0.5, inlet subcooling: 5 to 15°C. The results indicate that the heat transfer coefficient and pressure drop are functions of the flow quality, the mass flux, and, of course, the heat flux and the related surface superheat. The heat transfer coefficient decreases from a value of 12,000 W/m2-K to 9000, W/m2-K at 80°C, when the wall superheat is increased from 10 to 80°C. The coefficient decreases by 30 percent when the exit vapor quality is increased from 0.01 to 0.65.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmed Jassim Shkarah ◽  
Mohd Yusoff Bin Sulaiman ◽  
Md. Razali bin Hj Ayob

Physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both analytical analysis and numerical analysis. It is assumed that the capillary pressure is neglected (Morris, 2003). Results are provided for liquid film thickness, total heat flux, and evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the analytical results of Wang et al. (2008) and Wayner Jr. et al. (1976). The calculated results from the current model match closely with those of analytical results of Wang et al. (2008) and Wayner Jr. et al. (1976). This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region and develop an analytical equation for evaporating liquid film thickness.


2019 ◽  
Vol 65 (17) ◽  
pp. 1741-1751
Author(s):  
Yani Lu ◽  
Li Zhao ◽  
Shuai Deng ◽  
Dongpeng Zhao ◽  
Xianhua Nie ◽  
...  

Author(s):  
Ronald Akbar ◽  
Jong Taek Oh ◽  
Agus Sunjarianto Pamitran

Various experiments have been conducted on the heat transfer coefficient of two-phase flow boiling in mini channel tubes. In addition to obtaining data on the heat transfer coefficients through experiments, many researchers have also compared their experimental data using existing correlations. This research aims to determine the characteristics of the heat transfer coefficient of refrigerant R290 from the data used by processing and knowing the best heat transfer coefficient correlation in predicting the experimental data so that the results are expected to be a reference for designing a heat exchanger or for further research. The experimental data predicted is the two-phase flow boiling in a horizontal tube 3 mm diameter, with the mass flux of 50-180 kg/m2s, heat flux of 5-20 kW/m2, saturation temperature of 0-11 °C, and vapor quality of 0-1. The correlation used in this research is based on the asymptotic flow model, where the model is a combination of the nucleate and convective flow boiling mechanisms. The results show an effect of mass flux and heat flux on the experimental heat transfer coefficient and the predicted R290 heat transfer coefficient with asymptotic correlations had a good and similar result to the experimental data.


Kerntechnik ◽  
2021 ◽  
Vol 86 (5) ◽  
pp. 365-374
Author(s):  
A. M. Refaey ◽  
S. Elnaggar ◽  
S. H. Abdel-Latif ◽  
A. Hamza

Abstract The nucleate boiling regime and two-phase flow are greater importance to the safety analysis of nuclear reactors. In this study, the boiling heat transfer in nuclear reactor is numerical investigated. The computational fluid dynamics (CFD) code, ANSYS Fluent 17.2 is used and the boiling model is employed. The numerical predictions obtained are compared with the experimental data reported by A. Hamza et al. [9]. An experimental test rig is designed and constructed to investigate the effect of cooling water chemistry control and the material of heater surface. CFD software, allows the detailed analysis of the two-phase flow and heat transfer. In this paper, we evaluate the accuracy of the boiling model implemented in the ANSYS Fluent code. This model is based on the heat flux partitioning approach and accommodates the heat flux due to single-phase convection, quenching and evaporation. The validation carried out of surfactant fluid/vapor two-phase flow inside the 2-D cylindrical boiling vessel. A heated horizontal pipe with stainless steel, Aluminum, and Zircalloy surface materials are used to numerically predict the field temperature and void fraction. Different surfactant concentrations ranging from 0, (pure water) to 1500 ppm, and heat fluxes ranging from 31 to 110 kW/m2 are used. The results of the predicted model depict that the addition of SDS Surfactant and increasing the heat flux improves the coefficient of boiling heat transfer for a given concentration. Also, it was found that the increasing of the concentration of aqueous surfactant solution increases the pool boiling heat transfer coefficient. The aqueous surfactant solution SDS improved the heat transfer coefficient of Aluminum, Zircalloy and stainless steel surface materials by 135%.138% and 120% respectively. The results of the numerical model are nearly in agreement with that measured in experimental.


Author(s):  
Bharath Ramakrishnan ◽  
Cong Hiep Hoang ◽  
Sadegh Khalili ◽  
Yaser Hadad ◽  
Srikanth Rangarajan ◽  
...  

Abstract High Performance Computing (HPC) data centers demand cutting edge cooling techniques like direct contact liquid cooling (DCLC) for safe and secure operation of their high-power density servers. Two-phase flow boiling heat transfer technique is widely believed to address the heating problem posed by HPC racks. In this study, a novel liquid cooled cold plate containing microchannel and jet impingement arrangement was characterized for its two-phase flow and thermal behavior. A sophisticated bench top setup involving a mock package was developed to carry out the experiments in a controlled fashion using a dielectric fluid Novec/HFE-7000. Two-phase flow boiling in cold plates which has a strong dependency on surface phenomena was carefully studied at various levels of inlet pressure, subcooling, flow rates and heat flux levels to the mock package. A resistance network was invoked to determine the average heat transfer coefficient at various exit qualities estimated by energy balance equation. While the results make it evident that, the high heat generating components can be kept at operable conditions using the two-phase cooling; a deeper insight at the outcomes could pave way for more energy efficient cold plate designs. The experiment was carried out with a large heated surface of 6.45 cm2 and maximum dissipated heat flux was around 63.6 W/cm2 corresponding to chip power of 410 W. Base temperature was kept below 75 oC and pressure drop did not exceed 21 kPa.


Sign in / Sign up

Export Citation Format

Share Document