An Evaluation of the Average Flow Model [1] for Surface Roughness Effects in Lubrication

1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.

2005 ◽  
Vol 127 (4) ◽  
pp. 793-802 ◽  
Author(s):  
Guy Bayada ◽  
Sébastien Martin ◽  
Carlos Vázquez

An average Reynolds equation for predicting the effects of deterministic periodic roughness, taking Jakobsson, Floberg, and Olsson mass flow preserving cavitation model into account, is introduced based upon the double scale analysis approach. This average Reynolds equation can be used both for a microscopic interasperity cavitation and a macroscopic one. The validity of such a model is verified by numerical experiments both for one-dimensional and two-dimensional roughness patterns.


1955 ◽  
Vol 22 (3) ◽  
pp. 297-304
Author(s):  
Joseph Kaye ◽  
G. A. Brown

Abstract Reliable experimental data on local heat-transfer coefficients for supersonic flow of air in a round tube are reanalyzed in detail with the aid of an approximate two-dimensional flow model. The results are compared with similar results based on a one-dimensional flow model and with the theoretical predictions for supersonic flow over a flat plate and for flow in the entrance region of a tube when a laminar boundary layer is present. The two-dimensional flow model yields a better understanding of the phenomena which occur for diabatic supersonic flow of air in a round tube than that obtained with the aid of the one-dimensional flow model. The two-dimensional flow model shows that the core Mach number is nearly constant along the length of test section for a range of values of the inlet diameter Reynolds number. For a laminar boundary layer the values of the local Stanton number agree within a few per cent with the theoretical values for plate flow at the largest values of the inlet diameter Reynolds number.


1983 ◽  
Vol 105 (3) ◽  
pp. 458-463 ◽  
Author(s):  
J. H. Tripp

The average flow model of Patir and Cheng [1, 2] for obtaining an average Reynolds equation in the presence of two dimensional surface roughness is extended and generalized. Expectation values of the flow factors appearing in the formalism are calculated by means of a perturbation expansion of the pressure in a nominal parallel film. Terms in the series are evaluated using the unperturbed Green function, which permits ensemble averaging to be performed directly on the solution. Calculations are carried to second order, which involves only two point correlation functions of the two rough surfaces. Perturbation results agree well with results of the earlier numerical simulation until surface contact becomes important when both approaches are inadequate. The theory displays the dependence of the flow factors on the roughness parameters in simple closed form, leading to improved understanding of the average flow method.


1952 ◽  
Vol 19 (2) ◽  
pp. 185-194
Author(s):  
J. Kaye ◽  
T. Y. Toong ◽  
R. H. Shoulberg

Abstract The first part of a program to obtain reliable data on the rate of heat transfer to air moving at supersonic speeds in a tube has been devoted to measurements made on adiabatic supersonic flow of air in a tube. The details of these measurements have been described in a previous paper. The calculated quantities such as the local apparent friction coefficient, recovery factor, Mach number, and so forth, were obtained from the simple one-dimensional flow model for which the properties of the stream are uniform at any section, and boundary-layer effects are ignored. The analysis of some of the same data given in the previous paper is undertaken here with the aid of a simplified two-dimensional flow model. The supersonic flow in the tube is divided into a supersonic core of variable mass with the fluid remaining in the core undergoing a reversible adiabatic change of state, and a laminar boundary layer of variable mass. The compressible laminar boundary layer increases in thickness in the direction of flow, and then undergoes a transition to a turbulent boundary layer. The two-dimensional flow model is limited here to the region where a laminar boundary layer appears to be present in the entrance region of the tube. The results of the analysis based on the two-dimensional flow model indicate that where the flow in the tube boundary layer appears to be laminar, the measured pressures and temperatures in the tube for adiabatic supersonic flow of air could have been predicted, with sufficient accuracy for engineering problems, from measured data for supersonic flow of air over a flat plate with a laminar boundary layer, and with zero pressure gradient.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Moshe Rosenfeld ◽  
Kakani Katija ◽  
John O. Dabiri

Vortex rings are one of the fundamental flow structures in nature. In this paper, the generation of circulation and vortex rings by a vortex generator with a static converging conic nozzle exit is studied numerically. Conic nozzles can manipulate circulation and other flow invariants by accelerating the flow, increasing the Reynolds number, and by establishing a two-dimensional flow at the exit. The increase in the circulation efflux is accompanied by an increase in the vortex circulation. A novel normalization method is suggested to differentiate between two contributions to the circulation generation: a one-dimensional slug-type flow contribution and an inherently two-dimensional flow contribution. The one-dimensional contribution to the circulation increases with the square of the centerline exit velocity, while the two-dimensional contribution increases linearly with the decrease in the exit diameter. The two-dimensional flow contribution to the circulation production is not limited to the impulsive initiation of the flow only (as in straight tube vortex generators), but it persists during the entire ejection. The two-dimensional contribution can reach as much as 44% of the total circulation (in the case of an orifice). The present study offers evidences on the importance of the vortex generator geometry, and in particular, the exit configuration on the emerging flow, circulation generation, and vortex ring formation. It is shown that both total and vortex ring circulations can be controlled to some extent by the shape of the exit nozzle.


Sign in / Sign up

Export Citation Format

Share Document