scholarly journals Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method

1983 ◽  
Vol 105 (3) ◽  
pp. 458-463 ◽  
Author(s):  
J. H. Tripp

The average flow model of Patir and Cheng [1, 2] for obtaining an average Reynolds equation in the presence of two dimensional surface roughness is extended and generalized. Expectation values of the flow factors appearing in the formalism are calculated by means of a perturbation expansion of the pressure in a nominal parallel film. Terms in the series are evaluated using the unperturbed Green function, which permits ensemble averaging to be performed directly on the solution. Calculations are carried to second order, which involves only two point correlation functions of the two rough surfaces. Perturbation results agree well with results of the earlier numerical simulation until surface contact becomes important when both approaches are inadequate. The theory displays the dependence of the flow factors on the roughness parameters in simple closed form, leading to improved understanding of the average flow method.

1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.


1997 ◽  
Vol 119 (3) ◽  
pp. 549-555 ◽  
Author(s):  
L. Lunde ◽  
K. To̸nder

The lubrication of isotropic rough surfaces has been studied numerically, and the flow factors given in the so-called Average Flow Model have been calculated. Both pressure flow and shear flow are considered. The flow factors are calculated from a small hearing part, and it is shown that the flow in the interior of this subarea is nearly unaffected by the bearing part’s boundary conditions. The surface roughness is generated numerically, and the Reynolds equation is solved by the finite element method. The method used for calculating the flow factors can be used for different roughness patterns.


The hydrodynamic lubrication of rough surfaces is analysed with the Reynolds equation, whose application requires the roughness spacing to be large, and the roughness height to be small, compared with the thick­ness of the fluid film. The general two-dimensional surface roughness is considered, and results applicable to any roughness structure are obtained. It is revealed analytically that two types of term contribute to roughness effects: one depends on the shape of the autocorrelation function and the other does not. The former contribution was neglected by previous workers. The numerical computation of an example shows that these two contributions are comparable in magnitude.


1979 ◽  
Vol 101 (2) ◽  
pp. 220-229 ◽  
Author(s):  
Nadir Patir ◽  
H. S. Cheng

The Average Flow Model introduced in an earlier paper is extended to include sliding contacts by deriving the shear flow factor for various roughness configurations. Similar to the pressure flow factors, the shear flow factor is obtained through numerical flow simulation on a model bearing having numerically generated roughness. The flow factors for isotropic and directional surfaces are expressed as empirical relationships in terms of h/σ, a surface pattern parameter γ defined as the ratio of x and y correlation lengths, and the variance ratio Vr1 which is the ratio of variance of surface 1 to that of the composite roughness. Expressions for the mean shear stress and horizontal force components due to local pressure in rough bearings are derived through the definition of shear stress factors, also obtained through simulation. The application of the average Reynolds equation to analyze roughness effects in bearings is demonstrated on a finite slider. The effects of the operating parameters as well as the roughness parameters on mean hydrodynamic load, mean viscous friction and mean bearing inflow are illustrated.


2005 ◽  
Vol 127 (4) ◽  
pp. 793-802 ◽  
Author(s):  
Guy Bayada ◽  
Sébastien Martin ◽  
Carlos Vázquez

An average Reynolds equation for predicting the effects of deterministic periodic roughness, taking Jakobsson, Floberg, and Olsson mass flow preserving cavitation model into account, is introduced based upon the double scale analysis approach. This average Reynolds equation can be used both for a microscopic interasperity cavitation and a macroscopic one. The validity of such a model is verified by numerical experiments both for one-dimensional and two-dimensional roughness patterns.


Sign in / Sign up

Export Citation Format

Share Document