Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space

1988 ◽  
Vol 110 (2) ◽  
pp. 235-240 ◽  
Author(s):  
T. C. O’Sullivan ◽  
R. B. King

The quasi-static sliding contact stress field due to a spherical indenter on an elastic half-space with a single layer is studied. The contact problem is solved using a least-squares iterative approach and the stress field in the layer and substrate is determined using the Papkovich-Neuber potentials. The resulting stresses are discussed for different values of the layer stiffness relative to the substrate and also for different values of the friction coefficient.

1996 ◽  
Vol 63 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Y. S. Pak ◽  
F. Abedzadeh

This paper is concerned with the torsion of a rigid disk bonded to the bottom of a cylindrical indentation on an elastic half-space. By virtue of Fourier sine and cosine transforms, the mixed boundary value problem in classical elastostatics is shown to be reducible to a pair of integral equations, of which one possesses a generalized Cauchy singular kernel. With the aid of the theory of analytic functions, the inherent fractional-order singularity in the contact problem is rendered explicit. Illustrative results on the torsional stiffness of the base of the indentation and the corresponding contact stress distribution are presented for engineering applications.


2002 ◽  
Vol 125 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Shuangbiao Liu ◽  
Qian Wang

Computing the thermoelastic stress field of a material subjected to frictional heating is essential for component failure prevention and life prediction. However, the analysis for three-dimensional thermoelastic stress field for tribological problems is not well developed. Furthermore, the pressure distribution due to rough surface contact is irregular; hence the frictional heating can hardly be described by an analytical expression. This paper presents a novel set of frequency-domain expressions (frequency response functions) of the thermoelastic stress field of a uniformly moving three-dimensional elastic half-space subjected to arbitrary transient frictional heating, where the velocity of the half-space, its magnitude and direction, can be an arbitrary function of time. General formulas are expressed in the form of time integrals, and important expressions for constant velocities are given for the transient-instantaneous, transient-continuous, and steady-state cases. The thermoelastic stress field inside a translating half-space with constant velocities are illustrated and discussed by using the discrete convolution and fast Fourier transform method when a parabolic type or an irregularly distributed heat source is applied.


Sign in / Sign up

Export Citation Format

Share Document