Stresses and Displacements at the Intersection of Two Right Cylindrical Shells Subject to a Nonequilibrated Loading

1980 ◽  
Vol 102 (2) ◽  
pp. 182-187 ◽  
Author(s):  
A. K. Naghdi ◽  
J. M. Gersting

Cylindrical shells having pipe attachments and branches are extensively used in many industrial installations. Boilers, reactors, and cylindrical tanks are obvious examples. In this investigation the solution to the problem of stresses and displacements at the intersection of a simply supported circular cylindrical shell with a pipe attachment subject to a uniform load on its top is derived. It is assumed that the axes of the two cylindrical shells are intersecting and that they are perpendicular. Numerical values of stress resultants and stress couples at various points along the intersection curve of the two shells for several geometrical configurations are presented.

1957 ◽  
Vol 24 (4) ◽  
pp. 553-558
Author(s):  
R. M. Cooper

Abstract The problem of a line load along a segment of a generator of a simply supported circular cylindrical shell is treated using shallow cylindrical shell equations which include the effect of transverse-shear deformation. The line load is first treated as a sinusoidally-varying edge load over the length of the shell, with boundary conditions prescribed along the loaded generator such that the continuity of the shell is maintained. The solution for the problem of a uniform line load over a segment of a generator is obtained from the preceding solution, using the principle of superposition. By means of a numerical example it is shown that the results predicted by the Donnell equations for the stresses are in excellent agreement with those obtained from the system of equations employed here. However, the radial displacement predicted by the Donnell equations is in error by as much as 20 per cent in the range of shell geometry considered.


Author(s):  
S. Harutyunyan ◽  
D. J. Hasanyan ◽  
R. B. Davis

Formulation is derived for buckling of the circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners acting under axial compression, lateral pressure, and/or combinations thereof, based on Sanders-Koiter theory. Buckling loads of circular cylindrical laminated composite shells are obtained using Sanders-Koiter, Love, and Donnell shell theories. These theories are compared for the variations in the stiffened cylindrical shells. To further demonstrate the shell theories for buckling load, the following particular case has been discussed: Cross-Ply with N odd (symmetric) laminated orthotropic layers. For certain cases the analytical buckling loads formula is derived for the stiffened isotropic cylindrical shell, when the ratio of the principal lamina stiffness is F = E2/E1 = 1. Due to the variations in geometrical and physical parameters in theory, meaningful general results are complicated to present. Accordingly, specific numerical examples are given to illustrate application of the proposed theory and derived analytical formulas for the buckling loads. The results derived herein are then compared to similar published work.


Author(s):  
U. Yuceoglu ◽  
V. O¨zerciyes

This study is concerned with the “Free Asymmetric Vibrations of Composite Full Circular Cylindrical Shells Stiffened by a Bonded Central Shell Segment.” The base shell is made of an orthotropic “full” circular cylindrical shell reinforced and/or stiffened by an adhesively bonded dissimilar, orthotropic “full” circular cylindrical shell segment. The stiffening shell segment is located at the mid-center of the composite system. The theoretical analysis is based on the “Timoshenko-Mindlin-(and Reissner) Shell Theory” which is a “First Order Shear Deformation Shell Theory (FSDST).” Thus, in both “base (or lower) shell” and in the “upper shell” segment, the transverse shear deformations and the extensional, translational and the rotary moments of inertia are taken into account in the formulation. In the very thin and linearly elastic adhesive layer, the transverse normal and shear stresses are accounted for. The sets of the dynamic equations, stress-resultant-displacement equations for both shells and the in-between adhesive layer are combined and manipulated and are finally reduced into a ”Governing System of the First Order Ordinary Differential Equations” in the “state-vector” form. This system is integrated by the “Modified Transfer Matrix Method (with Chebyshev Polynomials).” Some asymmetric mode shapes and the corresponding natural frequencies showing the effect of the “hard” and the “soft” adhesive cases are presented. Also, the parametric study of the “overlap length” (or the bonded joint length) on the natural frequencies in several modes is considered and plotted.


Author(s):  
Lara Rodrigues ◽  
Paulo B. Gonçalves ◽  
Frederico M. A. Silva

This work investigates the influence of several modal geometric imperfections on the nonlinear vibration of simply-supported transversally excited cylindrical shells. The Donnell nonlinear shallow shell theory is used to study the nonlinear vibrations of the shell. A general expression for the transversal displacement is obtained by a perturbation procedure which identifies all modes that couple with the linear modes through the quadratic and cubic nonlinearities. The imperfection shape is described by the same modal expansion. So, a particular solution is selected which ensures the convergence of the response up to very large deflections. Substituting the obtained modal expansions into the equations of motions and applying the standard Galerkin method, a discrete system in time domain is obtained. Several numerical strategies are used to study the nonlinear behavior of the imperfect shell. Special attention is given to the influence of the form of the initial geometric imperfections on the natural frequencies, frequency-amplitude relation, resonance curves and bifurcations of simply-supported transversally excited cylindrical shells.


1964 ◽  
Vol 31 (1) ◽  
pp. 105-111 ◽  
Author(s):  
J. P. Jones ◽  
P. G. Bhuta

The response of a circular cylindrical shell subjected to a moving ring load with a constant velocity has been examined in detail when both longitudinal and transverse coupling effects are included. It is found that the correction in the bending resonance velocity resulting from the inclusion of longitudinal coupling effects is small. The results of the analysis may be used as influence coefficients to determine, by means of Duhamel integrals, the displacements and stresses produced by varying pressure pulses.


Author(s):  
Muzamal Hussain ◽  
Muhammad Nawaz Naeem ◽  
Mohammad Reza Isvandzibaei

In this paper, vibration characteristics of rotating functionally graded cylindrical shell resting on Winkler and Pasternak elastic foundations have been investigated. These shells are fabricated from functionally graded materials. Shell dynamical equations are derived by using the Hamilton variational principle and the Langrangian functional framed from the shell strain and kinetic energy expressions. Elastic foundations, namely Winkler and Pasternak moduli are inducted in the tangential direction of the shell. The rotational motions of the shells are due to the Coriolis and centrifugal acceleration as well as the hoop tension produced in the rotating case. The wave propagation approach in standard eigenvalue form has been employed in order to derive the characteristic frequency equation describing the natural frequencies of vibration in rotating functionally graded cylindrical shell. The complex exponential functions, with the axial modal numbers that depend on the boundary conditions stated at edges of a cylindrical shell, have been used to compute the axial modal dependence. In our new investigation, frequency spectra are obtained for circumferential wave number, length-to-radius ratio, height-to-radius ratio with simply supported–simply supported and clamped–clamped boundary conditions without elastic foundation. Also, the effect of elastic foundation on the rotating cylindrical shells is examined with the simply supported–simply supported edge. To check the validity of the present method, the fundamental natural frequencies of non-rotating isotropic and functionally graded cylindrical shells are compared with the open literature. Also, a comparison is made for infinitely long rotating with the earlier published paper.


Author(s):  
Antonio Zippo ◽  
Marco Barbieri ◽  
Matteo Strozzi ◽  
Vito Errede ◽  
Francesco Pellicano

In this paper an experimental study on circular cylindrical shells subjected to axial compressive and periodic loads is presented. Even though many researchers have extensively studied nonlinear vibrations of cylindrical shells, experimental studies are rather limited in number. The experimental setup is explained and deeply described along with the analysis of preliminary results. The linear and the nonlinear dynamic behavior associated with a combined effect of compressive static and a periodic axial load have been investigated for different combinations of loads; moreover, a non stationary response of the structure has been observed close to one of the resonances. The linear shell behavior is also investigated by means of a finite element model, in order to enhance the comprehension of experimental results.


2014 ◽  
Vol 580-583 ◽  
pp. 2879-2882
Author(s):  
Xiao Wan Liu ◽  
Bin Liang

Effect of ring support position and geometrical dimension on the free vibration of ring-stiffened cylindrical shells is studied in this paper. The study is carried out by using Sanders shell theory. Based on the Rayleigh-Ritz method, the shell eigenvalue governing equation is derived. The present analysis is validated by comparing results with those in the literature. The vibration characteristics are obtained investigating two different boundary conditions with simply supported-simply supported and clamped-free as the examples. Key Words: Ring-stiffened cylindrical shell; Free vibration; Rayleigh-Ritz method.


Sign in / Sign up

Export Citation Format

Share Document