Residual Stress Redistribution Caused by Notches and Cracks in a Partially Autofrettaged Tube

1981 ◽  
Vol 103 (4) ◽  
pp. 302-306 ◽  
Author(s):  
S. L. Pu ◽  
M. A. Hussain

A simple method is provided for the computation of the redistribution of residual stresses and the stress intensity factors due to the introduction of notches and cracks in a partially autofrettaged tube. Numerical results of several crack and notch problems are obtained by the method of thermal simulation. These results are shown to be in excellent agreement with those obtained from the classical method of superposition. The new method based on thermal simulation is easier to apply and it avoids the alternate method of superposition requiring cumbersome distributed crack face loadings for each crack configuration.

Author(s):  
Chang-Young Oh ◽  
Ji-Soo Kim ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
Kyoungsoo Lee ◽  
...  

This paper proposes a simple method to estimate stress intensity factors due to welding residual stresses. In this study, finite element analyses for circumferentially cracked pipe are performed to calculate stress intensity factors. Four cracked geometries and two types of weld geometry are considered. KI-solutions for the nonlinear stress distribution on the crack face were determined in accordance with codes and standards. The results are compared with KI-solutions from finite element results. It is found that proposed simple method agrees well with FE results.


1993 ◽  
Vol 28 (3) ◽  
pp. 145-152 ◽  
Author(s):  
M D B Wilks ◽  
D Nowell ◽  
D A Hills

A reliable, efficient method is described for modelling plane cracks in arbitary residual stress fields, using the technique of distributed dislocations. This allows correctly for re-distribution of residual stresses as the crack grows. Problems where crack closure occur are discussed, and implications for solution by finite element procedures are inferred and confirmed by comparison.


2017 ◽  
Vol 48 (4) ◽  
pp. 377-398
Author(s):  
Svyatoslav Igorevich Eleonskii ◽  
Igor Nikolaevich Odintsev ◽  
Vladimir Sergeevich Pisarev ◽  
Stanislav Mikhailovich Usov

1992 ◽  
Vol 114 (4) ◽  
pp. 690-697 ◽  
Author(s):  
H. Salehizadeh ◽  
N. Saka

The stress intensity factors for short straight and branched subsurface cracks subjected to a Hertzian loading are calculated by the finite element method. The effect of crack face friction on stress intensity factors is considered for both straight and branched cracks. The calculations show that the straight crack is subjected to pure mode II loading, whereas the branched crack is subjected to both mode I and mode II, with ΔKI/ΔKII < 0.25. Although KI is small, it strongly influences KII by keeping the branched crack faces apart. Based on the ΔKII values and Paris’s crack growth model, the number of stress reversals required to grow a crack in a rolling component from an initial threshold length to the final spalling length was estimated. It was found that the crack propagation period is small compared with the expected bearing fatigue life. Therefore, crack propagation is not the rate controlling factor in the fatigue failure of bearings operating under normal loading levels.


Author(s):  
D. J. Shim ◽  
S. Tang ◽  
T. J. Kim ◽  
N. S. Huh

Stress intensity factor solutions are readily available for flaws found in pipe to pipe welds or shell to shell welds (i.e., circumferential/axial crack in cylinder). In some situations, flaws can be detected in locations where an appropriate crack model is not readily available. For instance, there are no practical stress intensity factor solutions for circular-arc cracks which can form in circular welds (e.g., nozzle to vessel shell welds and storage cask closure welds). In this paper, stress intensity factors for circular-arc cracks in finite plates were calculated using finite element analysis. As a first step, stress intensity factors for circular-arc through-wall crack under uniform tension and crack face pressure were calculated. These results were compared with the analytical solutions which showed reasonable agreement. Then, stress intensity factors were calculated for circular-arc semi-elliptical surface cracks under the lateral and crack face pressure loading conditions. Lastly, to investigate the applicability of straight crack solutions for circular-arc cracks, stress intensity factors for circular-arc and straight cracks (both through-wall and surface cracks) were compared.


Author(s):  
M.A.A. Khattab ◽  
D.J. Burns ◽  
R.J. Pick ◽  
J.C. Thompson

In this paper, techniques are developed to handle the integrable singularities of the integral proposed by Burns and Oore for the estimation of opening mode stress intensity factors for embedded planar defects of arbitrary shape. The hybrid numerical-analytical integration techniques developed consider separately two crack front zones and one interior zone of the crack surface. Parameters are established for the sizing of the integration elements within each zone. Studies of elliptical defects with aspect ratios between 1 and 10 demonstrate the accuracy and efficiency of this procedure for computing opening mode stress intensity factors. A simple method which compensates for the quadrature error associated with computationally inexpensive, coarse grids is outlined.


Sign in / Sign up

Export Citation Format

Share Document