Asymptotic Formulas for the Buckling Stresses of Axially Compressed Cylinders With Localized or Random Axisymmetric Imperfections

1972 ◽  
Vol 39 (1) ◽  
pp. 179-184 ◽  
Author(s):  
J. C. Amazigo ◽  
B. Budiansky

Formulas are presented for the axial buckling stresses of long circular cylindrical shells having localized or random axisymmetric imperfections. The results are asymptotic in character, applicable only for sufficiently small magnitudes of the imperfections. The formulas found are discussed and compared with earlier results obtained by Koiter for the case of an imperfection in the shape of the axisymmetric buckling mode.

1975 ◽  
Vol 42 (2) ◽  
pp. 316-320 ◽  
Author(s):  
D. Lockhart ◽  
J. C. Amazigo

The dynamic buckling of imperfect finite circular cylindrical shells subjected to suddenly applied and subsequently maintained lateral or hydrostatic pressure is studied using a perturbation method. The geometric imperfections are assumed small but arbitrary. A simple asymptotic expression is obtained for the dynamic buckling load in terms of the amplitude of the Fourier component of the imperfection in the shape of the classical buckling mode. Consequently, for small imperfection, there is a simple relation between the dynamic buckling load under step-loading and the static buckling load. This relation is independent of the shape of the imperfection.


1965 ◽  
Vol 9 (02) ◽  
pp. 66-73
Author(s):  
Thein Wah

The possibility of axisymmetric modes of buckling of ring-stiffened circular cylindrical shells under axial compression is investigated by the use of finite-difference calculus. The theory accounts for both the extensional as well as torsional rigidity of the rings.


1974 ◽  
Vol 41 (3) ◽  
pp. 731-736 ◽  
Author(s):  
P. Bhatia ◽  
C. D. Babcock

The effect of prismatic imperfections on the buckling load of circular cylindrical shells under axial compression is examined by considering the problem as one of interaction between panels forming the shell. The imperfections are in the form of flat spots. Numerical results are presented to show the effect of shell geometric parameters and the number, size, and the type of flat spots on the buckling load.


1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


Sign in / Sign up

Export Citation Format

Share Document