Transients in High Spin Gyroscopic Systems

1974 ◽  
Vol 41 (3) ◽  
pp. 787-792 ◽  
Author(s):  
P. R. Sethna ◽  
M. Balachandra

Transient motions of nonlinear gyroscopic systems with large conserved momenta or with rotors with large angular velocities are studied by asymptotic methods of analysis. The general results are applied to the study of a damped heavy top and a single axis stable platform.

2009 ◽  
Vol 642 ◽  
pp. 295-328 ◽  
Author(s):  
SUKALYAN BHATTACHARYA ◽  
COLUMBIA MISHRA ◽  
SONAL BHATTACHARYA

In this paper, we develop an efficient procedure to solve for the Stokesian fields around a spherical particle in viscous fluid bounded by a cylindrical confinement. We use our method to comprehensively simulate the general creeping flow involving the particle-conduit system. The calculations are based on the expansion of a vector field in terms of basis functions with separable form. The separable form can be applied to obtain general reflection relations for a vector field at simple surfaces. Such reflection relations enable us to solve the flow equation with specified conditions at different disconnected bodies like the sphere and the cylinder. The main focus of this article is to provide a complete description of the dynamics of a spherical particle in a cylindrical vessel. For this purpose, we consider the motion of a sphere in both quiescent fluid and pressure-driven parabolic flow. Firstly, we determine the force and torque on a translating-rotating particle in quiescent fluid in terms of general friction coefficients. Then we assume an impending parabolic flow, and calculate the force and torque on a fixed sphere as well as the linear and angular velocities of a freely moving particle. The results are presented for different radial positions of the particle and different ratios between the sphere and the cylinder radius. Because of the generality of the procedure, there is no restriction in relative dimensions, particle positions and directions of motion. For the limiting cases of geometric parameters, our results agree with the ones obtained by past researchers using different asymptotic methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
F. Ünker ◽  
O. Çuvalcı

This paper deals with the investigation of optimum values of the stiffness and damping which connect two gyroscopic systems formed by two rotors mounted in gimbal assuming negligible masses for the spring, damper, and gimbal support. These coupled gyroscopes use two gyroscopic flywheels, spinning in opposing directions to have reverse precessions to eliminate the forces due to the torque existing in the torsional spring and the damper between gyroscopes. The system is mounted on a vertical cantilever with the purpose of studying the horizontal and vertical vibrations. The equation of motion of the compound system (gyro-beam system) is introduced and solved to find the response measured on the primary system. This is fundamental to design, in some way, the dynamic absorber or neutralizer. On the other hand, the effect of the angular velocities of the gyroscopes are studied, and it is shown that the angular velocity (spin velocity) of a gyroscope has a significant effect on the behavior of the dynamic motion. Correctness of the analytical results is verified by numerical simulations. The comparison with the results from the derivation of the corresponding frequency equations shows that the optimized stiffness and damping values are very accurate.


Author(s):  
Pranab K. Sen ◽  
Julio M. Singer ◽  
Antonio C. Pedroso de Lima

2000 ◽  
Vol 80 (2) ◽  
pp. 155-163 ◽  
Author(s):  
S. Odin, F. Baudelet, E. Dartyge, J. P

Sign in / Sign up

Export Citation Format

Share Document