parabolic flow
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 926 ◽  
Author(s):  
Benoît Pier ◽  
Peter J. Schmid

Pulsatile channel and pipe flows constitute a fundamental flow configuration with significant bearing on many applications in the engineering and medical sciences. Rotating machinery, hydraulic pumps or cardiovascular systems are dominated by time-periodic flows, and their stability characteristics play an important role in their efficient and proper operation. While previous work has mainly concentrated on the modal, harmonic response to an oscillatory or pulsatile base flow, this study employs a direct–adjoint optimisation technique to assess short-term instabilities, identify transient energy-amplification mechanisms and determine their prevalence within a wide parameter space. At low pulsation amplitudes, the transient dynamics is found to be similar to that resulting from the equivalent steady parabolic flow profile, and the oscillating flow component appears to have only a weak effect. After a critical pulsation amplitude is surpassed, linear transient growth is shown to increase exponentially with the pulsation amplitude and to occur mainly during the slow part of the pulsation cycle. In this latter regime, a detailed analysis of the energy transfer mechanisms demonstrates that the huge linear transient growth factors are the result of an optimal combination of Orr mechanism and intracyclic normal-mode growth during half a pulsation cycle. Two-dimensional sinuous perturbations are favoured in channel flow, while pipe flow is dominated by helical perturbations. An extensive parameter study is presented that tracks these flow features across variations in the pulsation amplitude, Reynolds and Womersley numbers, perturbation wavenumbers and imposed time horizon.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 226
Author(s):  
Joel G. Wright ◽  
Md Nafiz Amin ◽  
Holger Schmidt ◽  
Aaron R. Hawkins

Optofluidic flow-through biosensors are being developed for single particle detection, particularly as a tool for pathogen diagnosis. The sensitivity of the biosensor chip depends on design parameters, illumination format (side vs. top), and flow configuration (parabolic, two- and three-dimensional hydrodynamic focused (2DHF and 3DHF)). We study the signal differences between various combinations of these design aspects. Our model is validated against a sample of physical devices. We find that side-illumination with 3DHF produces the strongest and consistent signal, but parabolic flow devices process a sample volume more quickly. Practical matters of optical alignment are also discussed, which may affect design choice.


Author(s):  
Eric Gaskell ◽  
Xiaobo Tan

Abstract Drifters are energy-efficient platforms for monitoring rivers and oceans. Prior work largely focused on free-floating drifters that drift passively with flow and have little or no controllability. In this paper we propose steerable drifters that use multiple rudders for modulating the hydrodynamic forces and thus maneuvering. A dynamic model for drifters with multiple rudders is presented. Simulation is conducted to examine the behavior of the drifter in two different flow conditions, uniform flow and parabolic flow. When there is no difference in relative flow between the rudders, as in uniform flow, the drifter can only be controlled until its velocity approaches that of the water. However, when present, local flow differentials can be exploited to initiate motion lateral to the ambient flow and control the trajectory of the drifter to some degree. The motion of the drifter is further classified as belonging to one of three major modes, rotational, oscillatory, and stable. The behavior of the drifter in a simulated river was mapped for different rudder angles. Identifying the parameters that induce each mode lays the groundwork for developing a feedback control scheme for the drifter.


2020 ◽  
Vol 24 (5) ◽  
pp. 1139-1152
Author(s):  
Masaya Kawamura

Author(s):  
Yechun Wang ◽  
Xinnan Wang

Abstract A plethora of studies have investigated the motion of a liquid droplet in the vicinity of a smooth surface, incurred by shear flow, parabolic flow or gravity. However, there are few studies that consider the roughness of the surface that could affect the droplet motion. In this study, we employ a 3D spectral boundary element method for interfacial dynamics to examine the droplet translation, migration, and deformation in the vicinity of a rough surface due to shear flow. The roughness feature of the surface is comparable to the size of the droplet and is simulated with sinusoidal functions. Topologies of epoxy coating surfaces are also considered in the computations. The roughness and profile of the coating surface is obtained by atomic force microscopy. The computational results show that the surface roughness affects significantly the behavior of a deformable droplet near the surface, including its deformation and migration speed. In return, the dynamics of the droplet also influences the stress distribution on the rough surface. The results of this study could provide theoretical foundation in the prediction of particle induced erosion corrosion of organic coatings.


Sign in / Sign up

Export Citation Format

Share Document