On the Numerical Solution of Two-Dimensional, Laminar Compressible Flows With Imbedded Shock Waves

1972 ◽  
Vol 94 (4) ◽  
pp. 765-769 ◽  
Author(s):  
W. D. Goodrich ◽  
J. P. Lamb ◽  
J. J. Bertin

The complete, time-dependent Navier-Stokes equations are expressed in conservation form and solved by employing an explicit finite difference numerical technique which incorporates artificial viscosity terms of the form first suggested by Rusanov for numerical stability in the vicinity of shock waves. Surface boundary conditions are developed in a consistent and unique manner through the use of a physically oriented extrapolation procedure. From numerical experimentation an extended range for the explicit stability parameter is established. Also employed is an additional convergence parameter which relates incremental spatial steps. Convergence of the transient solution to a steady state flow was obtained after 400 to 500 time steps. Sample solutions are presented for supersonic flow of air over the leading edge of a slightly blunted flat plate, past a backward facing step, and in the near wake of a blunt trailing edge. Free-stream Mach numbers from 2 to 10 are included in the sample computations.

Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.


2001 ◽  
Author(s):  
Masaru Ishizuka ◽  
Guoyi Peng ◽  
Shinji Hayama

Abstract In the present work, an important basic flow phenomena, the natural convection induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the temperature equation are solved on the basis of finite difference method. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusions terms are approximated by the implicit Euler form, convection terms in the Navier-Stokes equations are approximated by the third order upwind difference scheme. The heat flux at the body surface of heater is specified. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behavior inside electronic equipment cabinet model which is very difficult, if not impossible, to gather by experiment.


1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.


2001 ◽  
Vol 444 ◽  
pp. 383-407 ◽  
Author(s):  
ERCAN ERTURK ◽  
THOMAS C. CORKE

The leading-edge receptivity to acoustic waves of two-dimensional parabolic bodies was investigated using a spatial solution of the Navier–Stokes equations in vorticity/streamfunction form in parabolic coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998) in which the solution for the basic flow and linearized perturbation flow are solved separately. We primarily investigated the effect of frequency and angle of incidence (−180° [les ] α2 [les ] 180°) of the acoustic waves on the leading-edge receptivity. The results at α2 = 0° were found to be in quantitative agreement with those of Haddad & Corke (1998), and substantiated the Strouhal number scaling based on the nose radius. The results with sound waves at angles of incidence agreed qualitatively with the analysis of Hammerton & Kerschen (1996). These included a maximum receptivity at α2 = 90°, and an asymmetric variation in the receptivity with sound incidence angle, with minima at angles which were slightly less than α2 = 0° and α2 = 180°.


Sign in / Sign up

Export Citation Format

Share Document