Studies on Natural Convection Induced Flow and Thermal Behavior Inside Electronic Equipment Cabinet Model

Author(s):  
Masaru Ishizuka ◽  
Guoyi Peng ◽  
Shinji Hayama

Abstract In the present work, an important basic flow phenomena, the natural convection induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the temperature equation are solved on the basis of finite difference method. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusions terms are approximated by the implicit Euler form, convection terms in the Navier-Stokes equations are approximated by the third order upwind difference scheme. The heat flux at the body surface of heater is specified. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behavior inside electronic equipment cabinet model which is very difficult, if not impossible, to gather by experiment.

Author(s):  
M Ishizuka ◽  
Y Kitamura

In the present work, an important basic flow phenomenon, natural convection-induced flow, is studied numerically. Three-dimensional Navier-Stokes equations along with the energy equation are solved based on the finite difference method. A generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. The results of calculation showed a satisfactory agreement with the measured data and led to a good understanding of the overall flow and thermal behaviour inside an electronic equipment cabinet model, which is very difficult, if not impossible, to gather by experiment.


2000 ◽  
Vol 6 (6) ◽  
pp. 433-444 ◽  
Author(s):  
Debasish Biswas ◽  
Masaru Ishizuka ◽  
Hideo Iwasaki

In the present work, the flow and temperature fields in large scale rotating electric motor are studied by solving the Navier–Stokes equations along with the temperature equation on the basis of finite difference method. All the equations are written in terms of relative velocity with respect to the rotating frame of reference. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusion terms are approximated by the implicit Euler form, convection terms in the Navier–Stokes equations are approximated by the third order upwind difference scheme. The results of calculation led to a good understanding of the flow behavior, namely, the rotating cavity flow in between the supporting bar of the motor, the flow stagnation and region of temperature rise due to flow stagnation, etc. Also the measured average temperature of the motor coil wall is predicted quite satisfactorily.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879086 ◽  
Author(s):  
Jintao Yin ◽  
Xiaosheng Wu ◽  
Juanmian Lei ◽  
Tianyu Lu ◽  
Xiaodong Liu

Reynolds-averaged simulations of flow over spinning finned missiles with and without canards were carried out at Ma = 0.6, 0.9, 1.5, and 2.5; α = 4°, 8°, and 12.6°; and [Formula: see text] to investigate different mechanisms of the Magnus effect. An implicit dual-time stepping method and the [Formula: see text] transition model were combined to solve the unsteady Reynolds-averaged Navier–Stokes equations. Grid independence study was conducted, and the computed results were compared with archival experimental data. The transient and time-averaged lateral force coefficients were obtained, and the flow field structures were compared at typical rolling angles. The results indicate that in subsonic conditions, the canards interference intensifies the asymmetrical distortion of the body surface boundary layer and flow separation at different angles of attack, doubling the absolute value of the time-averaged body lateral force; the wash flow effect strengthens on the leeward tail due to the canards interference, increasing its time-averaged lateral force; in supersonic conditions, the shock and expansion waves induced by canards, the vortex system, and the flow separation are responsible for the fluctuation of the body lateral force; the direction of the canard induced wash flow alters as angle of attack increases, increasing first and then decreasing the time-averaged tail lateral force.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


Author(s):  
Nadeem Ahmed Sheikh ◽  
M. Afzaal Malik ◽  
Arshad Hussain Qureshi ◽  
M. Anwar Khan ◽  
Shahab Khushnood

Flow past a blunt body, such as a circular cylinder, usually experiences boundary layer separation and very strong flow oscillations in the wake region behind the body at a discrete frequency that is correlated to the Reynolds number of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations. The effect of vibrating instability of a single cylinder is investigated in a uniform flow using the power of computational methods. Fluid structure coupling procedure predicts the fluid forces responsible for structural vibrations. An implicit approach to the solution of the unsteady two-dimensional Navier-Stokes equations is used for computation of flow parameters. Calculations are performed in parallel using a domain re-meshing/deforming technique with efficient communication requirements. Results for the unsteady shedding flow behind a circular cylinder are presented with experimental comparisons, showing the feasibility of accurate, efficient, time-dependent estimation of shedding frequency and resulting vibrations.


2018 ◽  
Vol 240 ◽  
pp. 01006 ◽  
Author(s):  
Nadezhda Bondareva ◽  
Mikhail Sheremet

Present study is devoted to numerical simulation of heat and mass transfer inside a cooper profile filled with paraffin enhanced with Al2O3 nanoparticles. This profile is heated by the heat-generating element of constant volumetric heat flux. Two-dimensional approximation of melting process is described by the Navier-Stokes equations in non-dimensional variables such as stream function, vorticity and temperature. The enthalpy formulation has been used for description of the heat transfer. The influence of volume fraction of nanoparticles and intensity of heat generation on melting process and natural convection in liquid phase has been studied.


1998 ◽  
Vol 26 ◽  
pp. 289-295
Author(s):  
Mohamed Naaim ◽  
Thierry Pellarin

In this paper, numerical and experimental approaches are applied to analyse the dynamics of the front of a gravity current. This study focused on two parameters: internal density and velocity fields. The salt concentration was determined by a potentiometric process. The internal velocities were determined using an optical device and an image-processing system. The structure of the head of the gravity current was analysed. Its density was measured and two stages of evolution were observed. This analysis allows us to coufirm the existence of two important stages. Forxf<xs, where the dynamics depend on the initial condition, the flow consists of a head and body and the front density is constant. Forxf>xs, we show that the density of the front decreases and evolves towards the Hallworth and others (1993) law. From a comparison between the experiments and the numerical model, we show that the numerical model, which is based on Navier–Stokes equations and on thek−Lturbulence model (whereLis the height of the gravity current), can predict well flow in the slump regime and in the inertia–buoyancy regime with smoothed results in the transition from the head to the body of the gravity current.


Author(s):  
Giuseppina Colicchio ◽  
Claudio Lugni ◽  
Marilena Greco ◽  
Odd M. Faltinsen

A Domain-Decomposition (DD) strategy is proposed for problems involving regions with slow variations of the flow (A) and others where the fluid features undergo rapid changes (B), like in the case of steady current past bodies with pronounced local unsteadiness connected with the vortex shedding from the structures. For an efficient and accurate solution of such problems, the DD couples a Finite Difference solver of the Navier-Stokes equations (FD-NS) with a Multiple Relaxation Time Lattice Boltzmann method (MRT-LBM). Regions A are handled by FD-NS, while zones B are solved by MRT-LBM and the two solvers exchange information within a strong coupling strategy. Present DD strategy is able to deal with a dynamic change of the sub-domains topology. This feature is needed when regions with vorticity shed from the body vary in time for a more flexible and reliable solution strategy. Its performances in terms of accuracy and efficiency have been successfully assessed by comparing the hybrid solver against a full FD-NS solution and experimental data for a 2D circular cylinder in an impulsively started flow.


Sign in / Sign up

Export Citation Format

Share Document