50-Fold Difference in Region-II Fatigue Crack Propagation Resistance of Titanium Alloys: A Grain-Size Effect

1979 ◽  
Vol 101 (1) ◽  
pp. 86-90 ◽  
Author(s):  
G. R. Yoder ◽  
L. A. Cooley ◽  
T. W. Crooker

Fatigue crack growth rates (da/dN) in ambient laboratory air have been determined for a wide variety of materials from four basic α + β titanium alloy systems. Each material was cyclically loaded with a haversine waveform and a load ratio, R = 0.10. The results indicate that, at a constant value of stress-intensity range (ΔK), the width of the da/dN data band exceeds an order of magnitude. For example, at ΔK = 21 MPa·m1/2, a 50-fold difference in fatigue crack propagation rates is observed. Analysis of the crack growth rate data at this point indicates a systematic dependence on grain size (l), viz. that da/dN decreases with increasing l. An interpretation of this effect is offered in terms of reversed (cyclic) plastic zone size considerations.

2010 ◽  
Vol 667-669 ◽  
pp. 873-878 ◽  
Author(s):  
Kristin Hockauf ◽  
T. Halle ◽  
Matthias Hockauf ◽  
Martin F.X. Wagner ◽  
Thomas Lampke

In the present work, the near-threshold fatigue crack propagation (FCP) at different load ratios is studied for an aluminium alloy processed by equal-channel angular pressing (ECAP). The conditions under investigation represent different stages of microstructural refinement as well as a ductility-optimized condition with superior crack growth properties, obtained by a combination of ECAP and aging. The results show a strong dependency of the threshold and its load ratio sensitivity on the grain size and grain size distribution. These observations can be rationalized on the basis of crack path tortuosity and the contribution of (roughness-induced) crack closure. Moreover, the experimental data is evaluated using the two-parametric concept of Vasudevan and Sadananda, which employs two necessary minimum conditions for crack growth, namely a critical cyclic K*th, and a critical maximum stress intensity K*max. The application of this concept shows a strong interaction of both parameters for all ECAP-processed conditions, where the ductility-optimized condition reveals superior FCP properties compared to the “as-processed” conditions.


1990 ◽  
Vol 27 (04) ◽  
pp. 221-224
Author(s):  
S. J. Gill ◽  
T. W. Crooker

Fatigue crack propagation was studied in MF-80 HSLA steel in ambient room air and in 3.5 percent sodium chloride salt water. Region II fatigue crack growth rate (da/dN) data were obtained at two load ratios, R = 0.10 and R = 0.67. da/dN values were found to be affected by both load ratio and environment, with the greatest effect being caused by the combination of high load ratio and salt-water environment. Overall, the results of this study suggest that MF-80 HSLA steel may have slightly less Region II fatigue crack propagation resistance than other high-strength steels of comparable strength.


2012 ◽  
Vol 706-709 ◽  
pp. 1233-1236 ◽  
Author(s):  
Shigeki Morita ◽  
Nobuyoshi Ohno ◽  
Fujio Tamai ◽  
Yuji Kawakami

This paper describes the fatigue crack propagation behavior of extruded AZ31B magnesium alloys (average grain size: approximately 15 and 119 μm, respectively). Fatigue crack propagation tests were performed on center cracked tension (CCT) specimens at a stress ratio ofR=0.1 and a frequency of 10 Hz at room temperature. Loading axis was parallel to the extrusion direction; crack face was perpendicular to basal plane of each grain. The crack growth rate (da/dN) of the coarse-grained specimen was approximately 5 times higher than that of the fine-grained specimen. Fracture surfaces of the fine-grained and coarse-grained specimens showed various directional steps independent of macroscopic crack growth direction.


1987 ◽  
Vol 109 (1) ◽  
pp. 81-85 ◽  
Author(s):  
W. Yu ◽  
R. O. Ritchie

Fatigue crack propagation behavior has been examined in a commercial 12.7 mm thick plate of Al-Cu-Li-Zr alloy, 2090, with specific emphasis on the effect of single compression overload cycles. Based on low load ratio experiments on cracks arrested at the fatigue threshold (ΔKTH), it is found that crack growth at ΔKTH can be promoted through the application of periodic compression cycles, of magnitude two times the peak tensile load. Similar to 2124 and 7150 aluminum alloys, such compression-induced crack growth at the threshold decelerates progressively until the crack re-arrests, consistent with the reduction and subsequent re-generation of crack closure. The compressive loads required to cause such behavior, however, are far smaller in the 2090 alloy. Such diminished resistance of aluminum-lithium alloys to compression cycles is discussed in terms their enhanced “extrinsic” crack growth resistance from crack path deflection and resultant crack closure, and the reduction in the closure from the compaction of fracture surface asperities by moderate compressive stresses.


2014 ◽  
Vol 941-944 ◽  
pp. 1513-1516
Author(s):  
Yan Rui Zuo ◽  
Zhi Yuan Rui ◽  
Rui Cheng Feng ◽  
Chang Feng Yan ◽  
Hai Yan Li

Study of grain size and lamellar spacing on fatigue crack propagation resistance in TiAl alloy has been done. The effects have been analyzed specifically. Meanwhile, the influence has been verified with some fatigue crack propagation experimental results and Paris formula. The experimental results confirmed that the grain size and lamellar spacing have significant effect on fatigue crack growth resistance. According to the Paris formula, the specific values of the constants in the formula were calculated.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


Sign in / Sign up

Export Citation Format

Share Document