Boundary-Layer Development on an Axial-Flow Compressor Stator Blade

1978 ◽  
Vol 100 (2) ◽  
pp. 287-292 ◽  
Author(s):  
R. L. Evans

The boundary layer on an axial-flow compressor stator blade has been measured using an ensemble-averaging technique. Although the mean velocity profiles appear to indicate fully developed turbulent flow, ensemble-averaged instantaneous profiles show the boundary layer to be highly unsteady and transitional over much of the blade chord. At a given chordwise position, variations in boundary-layer thickness with time of up to 150 percent were recorded. When compared to boundary-layer development on a similar blade in a two-dimensional cascade the stator blade boundary-layer growth was found to be much greater. The results indicate that extreme caution should be used in attempting to predict blade boundary-layer development from cascade test results or steady calculation procedures.

1980 ◽  
Vol 102 (1) ◽  
pp. 50-60 ◽  
Author(s):  
B. Lakshminarayana ◽  
R. Davino

Pure tone noise, blade row vibrations, and aerodynamic losses are phenomena which are influenced by stator and IGV blade wake production, decay, and interaction in an axial-flow compressor. The objective of this investigation is to develop a better understanding of the nature of stator and IGV blade wakes that are influenced by the presence of centrifugal forces due to flow curvature. A single sensor hot wire probe was employed to determine the three mean velocity components of stator and IGV wakes of a single stage compressor. These wake profiles indicated a varying decay rate of the tangential and axial wake velocity components and a wake profile similarity. An analysis, which predicts this trend, has been developed. The radial velocities are found to be appreciable in both IGV and the stator wakes. This wake data as well as the data from other sources are correlated in this paper. Appreciable static pressure gradient across the wake is found to exist near the trailing edge of both stator and IGV.


1984 ◽  
Author(s):  
Francis Leboeuf

A computational method for secondary flows in a compressor has been extended to treat stalled flows. An integral equation is used which simulates the inviscid flow at the wall, under the viscous flow influence. We present comparisons with experimental results for a 2D stalled boundary layer, and for the secondary flow in a highly loaded stator of an axial flow compressor.


1954 ◽  
Vol 58 (522) ◽  
pp. 434-434
Author(s):  
J. H. Horlock

Glass Cloth/Polyester resin laminates similar to those described by Irving and Saunders (Journal, February 1954) have been used at the University Engineering Laboratory, Cambridge, in the manufacture of blades for an axial flow compressor. In the first experiments, an existing aluminium stator blade was used as a pattern, and a mould was made by pouring molten type metal round this pattern, held in a steel sided moulding box.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


Sign in / Sign up

Export Citation Format

Share Document