flow curvature
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1898
Author(s):  
Jean-Marc Ginoux ◽  
Riccardo Meucci

Previous studies have demonstrated, experimentally and theoretically, the existence of slow–fast evolutions, i.e., slow chaotic spiking sequences in the dynamics of a semiconductor laser with AC-coupled optoelectronic feedback. In this work, the so-called Flow Curvature Method was used, which provides the slow invariant manifold analytical equation of such a laser model and also highlights its symmetries if any exist. This equation and its graphical representation in the phase space enable, on the one hand, discriminating the slow evolution of the trajectory curves from the fast one and, on the other hand, improving our understanding of this slow–fast regime.


2021 ◽  
Vol 118 (29) ◽  
pp. e2103822118
Author(s):  
Siddhansh Agarwal ◽  
Fan Kiat Chan ◽  
Bhargav Rallabandi ◽  
Mattia Gazzola ◽  
Sascha Hilgenfeldt

Modern inertial microfluidics routinely employs oscillatory flows around localized solid features or microbubbles for controlled, specific manipulation of particles, droplets, and cells. It is shown that theories of inertial effects that have been state of the art for decades miss major contributions and strongly underestimate forces on small suspended objects in a range of practically relevant conditions. An analytical approach is presented that derives a complete set of inertial forces and quantifies them in closed form as easy-to-use equations of motion, spanning the entire range from viscous to inviscid flows. The theory predicts additional attractive contributions toward oscillating boundaries, even for density-matched particles, a previously unexplained experimental observation. The accuracy of the theory is demonstrated against full-scale, three-dimensional direct numerical simulations throughout its range.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150112
Author(s):  
Jean-Marc Ginoux

Slow–fast dynamical systems, i.e. singularly or nonsingularly perturbed dynamical systems possess slow invariant manifolds on which trajectories evolve slowly. Since the last century various methods have been developed for approximating their equations. This paper aims, on the one hand, to propose a classification of the most important of them into two great categories: singular perturbation-based methods and curvature-based methods, and on the other hand, to prove the equivalence between any methods belonging to the same category and between the two categories. Then, a deep analysis and comparison between each of these methods enable to state the efficiency of the Flow Curvature Method which is exemplified with paradigmatic Van der Pol singularly perturbed dynamical system and Lorenz slow–fast dynamical system.


Author(s):  
Lisa Steigerwalt Lam ◽  
Yuri Muzychka

Abstract Surfaces which are structured on the micro- and nanoscale to resist wetting are being considered for internal flows due to their drag reducing properties in applications such as electronics cooling and lab-on-chip. Here, an expression is developed to characterize the hydrodynamic slip in a laminar flow which occurs near the surface for the case when positive meniscus curvature is present. The surfaces considered are composed of ridges oriented parallel to the flow. Curvature of the meniscus, which resides between the liquid in the Cassie state and the gas trapped in cavities between the ridges, results from the pressure difference between the liquid and the gas. The meniscus is considered shear free. The no slip condition exists at the tips of the ridges. Conformal maps from the literature are used to derive an expression which is a function of cavity fraction of the surface. The positive protrusion angle is 90 degrees. Cavity fractions range from 0 to 75%.


2020 ◽  
Vol 6 (1) ◽  
pp. 33-48
Author(s):  
A. K. M. Nazimuddin ◽  
◽  
Md. Showkat Ali ◽  
Keyword(s):  

2019 ◽  
Vol 868 ◽  
pp. 461-500 ◽  
Author(s):  
Víctor Chavarrías ◽  
Ralph Schielen ◽  
Willem Ottevanger ◽  
Astrid Blom

A two-dimensional model describing river morphodynamic processes under mixed-size sediment conditions is analysed with respect to its well posedness. Well posedness guarantees the existence of a unique solution continuously depending on the problem data. When a model becomes ill posed, infinitesimal perturbations to a solution grow infinitely fast. Apart from the fact that this behaviour cannot represent a physical process, numerical simulations of an ill-posed model continue to change as the grid is refined. For this reason, ill-posed models cannot be used as predictive tools. One source of ill posedness is due to the simplified description of the processes related to vertical mixing of sediment. The current analysis reveals the existence of two additional mechanisms that lead to model ill posedness: secondary flow due to the flow curvature and the effect of gravity on the sediment transport direction. When parametrising secondary flow, accounting for diffusion in the transport of secondary flow intensity is a requirement for obtaining a well-posed model. When considering the theoretical amount of diffusion, the model predicts instability of perturbations that are incompatible with the shallow water assumption. The effect of gravity on the sediment transport direction is a necessary mechanism to yield a well-posed model, but not all closure relations to account for this mechanism are valid under mixed-size sediment conditions. Numerical simulations of idealised situations confirm the results of the stability analysis and highlight the consequences of ill posedness.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Alberto Scotti Del Greco ◽  
Vittorio Michelassi ◽  
Stefano Francini ◽  
Daniele Di Benedetto ◽  
Mahendran Manoharan

Gas turbines engine designers are leaning toward aircraft engine architectures due to their footprint, weight, and performance advantages. Such engines need some modifications to both the combustion system, to comply with emission limits, and turbine rotational speed. Aeroderivative engines maintain the same legacy aircraft engine architecture and replace the fan and booster with a higher speed compressor booster driven by a single-stage intermediate turbine. A multistage free power turbine (FPT) sits on a separate shaft to drive compressors for liquefied natural gas (LNG) applications or generators. The intermediate-power turbine (IPT) design is important for the engine performance as it drives the booster compressor and sets the inlet boundary conditions to the downstream power turbine. This paper describes the experience of Baker Hughes, a GE company (BHGE) in the design of the intermediate turbine that sits in between a GE legacy aircraft engine core exhaust and the downstream power turbine. This paper focuses on the flow path of the turbine center frame (TCF)/intermediate turbine and the associated design, as well as on the 3D steady and unsteady computational fluid dynamics (CFD)-assisted design of the IPT stage to control secondary flows in presence of through flow curvature induced by the upstream TCF.


Sign in / Sign up

Export Citation Format

Share Document