rotor wake
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Jaehyoung Lee ◽  
Sungkyung Lim ◽  
Sungryong Lee ◽  
Hyoun-Woo Shin ◽  
Seung Jin Song

Abstract Periodic unsteady flow kinematics in a shrouded multistage low-speed axial compressor has been measured for the first time. Data have been acquired at the inlet and exit of a shrouded 3rd- stage stator with a particular focus on the hub flows. The newly found features of the hub flow in a shrouded multistage compressor are different from those at the midspan or in unshrouded (i.e., cantilevered) compressors. First, the merging of the 2nd-stage stator and 3rd-stage rotor wakes causes positive radial migration near the rotor wake pressure surface at the hub of the 3rd-stage stator inlet. Second, the low-momentum labyrinth seal leakage flow of the 3rd-stage stator merges with the 3rd-stage rotor wake to create streamwise vorticity at the 3rd-stage stator inlet hub. Third, contrary to unshrouded stators, suction side hub corner separation in the shrouded 3rd-stage stator reduces rotor wake stretching. Thus, velocity disturbances are attenuated less, and amplitudes of periodic fluctuations in flow angles are larger at the 3rd-stage stator exit hub than at midspan. The positive radial migration of the rotor wake hub flow and wake stretching reduction are expected to decrease efficiency, whereas streamwise vorticity generation is expected to increase efficiency.


2021 ◽  
Vol 127 ◽  
pp. 100762
Author(s):  
G. Throneberry ◽  
C.M. Hocut ◽  
A. Abdelkefi
Keyword(s):  

2021 ◽  
Vol 11 (21) ◽  
pp. 9935
Author(s):  
Theologos Andronikos ◽  
George Papadakis ◽  
Vasilis Riziotis ◽  
Spyros Voutsinas

The interaction of a helicopter rotor with the ground in hover flight is addressed numerically using a hybrid Eulerian–Lagrangian CFD model. When a helicopter takes off or lands, its wake interferes with the ground. This interaction, depending on the height-to-rotor diameter ratio, causes the altering of the rotor loading and performance as compared to the unconstrained case and gives rise to the development of a complex outwash flow field in the surrounding of the helicopter. The present study aims to characterize the interactional phenomena occurring in the early stages of the rotor wake development and in particular the interference of the starting vortex with the ground boundary layer and the effect of this interaction in the motion of the vortex in the rotor outwash flow. The hybrid CFD method employed combines a standard URANS compressible finite volume solver, the use of which is restricted to confined grids around solid bodies, and a Lagrangian approximation of the entire flow field in which conservation equations are solved in their material form, disctretized using particle representation of the flow quantities. The two methods are strongly coupled to each other through an appropriate iterative scheme. The main advantage of the proposed methodology is that it can conveniently handle complex configurations with several bodies that move independently from one another, with affordable computational cost. In this paper, thrust coefficient predictions of the hybrid model are compared to predictions of a free wake code and to experimental data indicating that consistent prediction of the rotor load requires the inclusion of the ground boundary layer in the analysis. Moreover, detailed comparisons of the rotor wake evolution predicted by the hybrid model are presented.


2021 ◽  
Vol 14 (4) ◽  
pp. 181
Author(s):  
Yuri Mikhailovich Ignatkin ◽  
Pavel Vyacheslavovich Makeev ◽  
Alexander Ivanovich Shomov ◽  
Valery Andreevich Ivchin

2021 ◽  
Author(s):  
Ayush Saraswat ◽  
Subhra Shankha Koley ◽  
Joseph Katz

Abstract Ongoing experiments conducted in a one-and-half stages axial compressor installed in the JHU refractive index-matched facility investigate the evolution of flow structure across blade rows. After previously focusing only on the rotor tip region, the present stereo-PIV (SPIV) measurements are performed in a series of axial planes covering an entire passage across the machine, including upstream of the IGV, IGV-rotor gap, rotor-stator gap, and downstream of the stator. The measurements are performed at flow rates corresponding to pre-stall condition and best efficiency point (BEP). Data are acquired for various rotor-blade orientations relative to the IGV and stator blades. The results show that at BEP, the wakes of IGV and rotor are much more distinct and the wake signatures of one row persists downstream of the next, e.g., the flow downstream of the stator is strongly affected by the rotor orientation. In contrast, under pre-stall conditions, the rotor orientation has minimal effect on the flow structure downstream of the stator. However, the wakes of the stator blades, where the axial momentum is low, are now wider. For both conditions, the flow downstream of the rotor is characterized by two regions of axial momentum deficit in addition to the rotor wake. A deficit on the pressure side of the rotor wake tip is associated with the tip leakage vortex (TLV) of the previous rotor blade, and is much broader at pre-stall condition. A deficit on the suction side of the rotor wake near the hub appears to be associated with the hub vortex generated by the neighboring blade, and is broader at BEP. At pre-stall, while the axial momentum upstream of the rotor decreases over the entire tip region, it is particularly evident near the rotor blade tip, where the instantaneous axial velocity becomes intermittently negative. Downstream of the rotor, there is a substantial reduction in mean axial momentum in the upper half of the passage, concurrently with an increase in the circumferential velocity. Consequently, the incidence angle upstream of the stator increases in certain regions by up to 30 degrees. These observations suggest that while the onset of the stall originates from the rotor tip flow, one must examine its impact on the flow structure in the stator passage as well.


2021 ◽  
Author(s):  
Jaehyoung Lee ◽  
Sungkyung Lim ◽  
Hyoun-Woo Shin ◽  
Sungryong Lee ◽  
Seung Jin Song

Abstract Periodic unsteady flow kinematics in a shrouded multistage low-speed axial compressor has been measured for the first time. Data have been acquired at the inlet and exit of a shrouded 3rd-stage stator with a particular focus on the hub flows. The newly found features of the hub flow in a shrouded multistage compressor are different from those at the midspan or in unshrouded (i.e., cantilevered) compressors. First, the merging of the 2nd-stage stator and 3rd-stage rotor wakes causes positive radial migration near the rotor wake pressure surface at the hub of the 3rd-stage stator inlet. Second, the low-momentum labyrinth seal leakage flow of the 3rd-stage stator merges with the 3rd-stage rotor wake to create streamwise vorticity at the 3rd-stage stator inlet hub. Third, contrary to unshrouded stators, suction side hub corner separation in the shrouded 3rd-stage stator reduces rotor wake stretching. Thus, velocity disturbances are attenuated less, and amplitudes of periodic fluctuations in flow angles are larger at the 3rd-stage stator exit hub than at midspan. The positive radial migration of the rotor wake hub flow and wake stretching reduction are expected to decrease efficiency, whereas streamwise vorticity generation is expected to increase efficiency.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2613
Author(s):  
Fabrizio De Gregorio ◽  
Antonio Visingardi ◽  
Gaetano Iuso

The rotor wake aerodynamic characterization is a fundamental aspect for the development and optimization of future rotary-wing aircraft. The paper is aimed at experimentally and numerically characterizing the blade tip vortices of a small-scale four-bladed isolated rotor in hover conditions. The investigation of the vortex decay process during the downstream convection of the wake is addressed. Two-component PIV measurements were carried out below the rotor disk down to a distance of one rotor radius. The numerical simulations were aimed at assessing the modelling capabilities and the accuracy of a free-wake Boundary Element Methodology (BEM). The experimental and numerical results were investigated by the Γ2 criterion to detect the vortex location. The rotor wake mean velocity field and the instantaneous vortex characteristics were investigated. The experimental/numerical comparisons show a reasonable agreement in the estimation of the mean velocity inside the rotor wake, whereas the BEM predictions underestimate the diffusion effects. The numerical simulations provide a clear picture of the filament vortex trajectory interested in complex interactions starting at about a distance of z/R = −0.5. The time evolution of the tip vortices was investigated in terms of net circulation and swirl velocity. The PIV tip vortex characteristics show a linear mild decay up to the region interested by vortex pairing and coalescence, where a sudden decrease, characterised by a large data scattering, occurs. The numerical modelling predicts a hyperbolic decay of the swirl velocity down to z/R = −0.4 followed by an almost constant decay. Instead, the calculated net circulation shows a gradual decrease throughout the whole wake development. The comparisons show discrepancies in the region immediately downstream the rotor disk but significant similarities beyond z/R = −0.5.


2021 ◽  
Author(s):  
Carlos Ferreira ◽  
Wei Yu ◽  
Arianna Salla ◽  
Axelle Vire

Abstract. Floating Offshore Wind Turbines may experience large surge motions which, when faster than the local wind speed, cause rotor-wake interaction. Previous research hypothesised that this phenomena can result in a turbulent wake state or even a vortex ring state, invalidating the Actuator Disc Momentum Theory and the use of the Blade Element Momentum Theory. We challenge this hypothesis and demonstrate that the Actuator Disc Momentum Theory is valid and accurate in predicting the induction at the actuator in surge, even for large and fast motions. To achieve this, we derive a dynamic inflow model which mimics the vorticity-velocity system and the effect of the motion. The predictions of the model are compared against results from other authors and from a semi-free wake vortex-ring model. The results show that the surge motion and rotor-wake interaction do not cause a turbulent wake state or vortex ring state, and that the application of Actuator Disc Momentum Theory and Blade Element Momentum Theory is valid and accurate, when correctly applied in an inertial reference frame. The results show excellent agreement in all cases. The proposed dynamic inflow model includes an adaptation for highly loaded flow and it is accurate and simple enough to be easily implemented in most Blade Element Momentum models.


2021 ◽  
Vol 911 ◽  
Author(s):  
E. Durán Venegas ◽  
P. Rieu ◽  
S. Le Dizès

Abstract


Sign in / Sign up

Export Citation Format

Share Document