Thermal Radiative Properties of the Noble Metals at Cryogenic Temperatures

1976 ◽  
Vol 98 (3) ◽  
pp. 438-445 ◽  
Author(s):  
W. M. Toscano ◽  
E. G. Cravalho

Experimental values of the monochromatic, near normal emittance, ελN, of gold at cryogenic temperatures are presented and compared with values predicted by existing theoretical models. From this comparison recommendations are made regarding the engineering suitability of these models. Data obtained by the present authors for ελN of gold in the wavelength range 1 to 30μ and at temperatures of 300, 79, and 6.0 K are compared with the Drude free electron model, the anomalous skin effect theory for both specular and diffuse electron reflections, and the Holstein quantum mechanical model. Results show that the anomalous skin effect model with diffuse electron reflections predicts ελN most accurately. At room temperature and at liquid nitrogen temperature the agreement between this model and the data is within 5 percent. At liquid helium temperatures the agreement is somewhat poorer, i.e., within 30 percent.

1970 ◽  
Vol 92 (3) ◽  
pp. 399-404 ◽  
Author(s):  
G. A. Domoto ◽  
C. L. Tien

The radiative transfer between two infinite parallel metallic surfaces separated by a nonconducting ideal dielectric is calculated on the basis of electromagnetic wave theory. The solution is restricted to the case of large spacing (thick film) wherein the effects of interference and radiation tunneling can be neglected. The optical properties of the metals are predicted via the anomalous skin effect theory, the Drude single electron theory and the Hagen-Rubens relation. A comparison of the predicted radiative fluxes indicates the large disparities which result from the three different specifications of the optical properties of metals. For practical applications at cryogenic temperatures, approximations are obtained for the thick film solution using the anomalous skin effect theory of the optical properties.


1968 ◽  
Vol 165 (3) ◽  
pp. 755-764 ◽  
Author(s):  
H. E. Bennett ◽  
J. M. Bennett ◽  
E. J. Ashley ◽  
R. J. Motyka

2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


1962 ◽  
Vol 27 (4) ◽  
pp. 842-843 ◽  
Author(s):  
Sadao Nakajima ◽  
Mitsuo Watabe

Sign in / Sign up

Export Citation Format

Share Document