A Theoretical Study of the Effects of Cooling on Thermoelastic Contact Instabilities

1977 ◽  
Vol 99 (2) ◽  
pp. 247-253 ◽  
Author(s):  
S. R. Heckmann ◽  
R. A. Burton

The effects of cooling on thermoelastic instability are delineated for a two dimensional flat plate geometry. The analysis includes conductive heat transfer from the edge of the flat plate as well as convective heat transfer from its sides. Cooling is found to be characterized by two dimensionless parameters allowing a direct comparison between these results and previous results where cooling was ignored. An immediate assessment can be made concerning the significance of cooling, and if cooling effects need be included in the design analysis.

1982 ◽  
Vol 104 (1) ◽  
pp. 111-117 ◽  
Author(s):  
B. A. Meyer ◽  
J. W. Mitchell ◽  
M. M. El-Wakil

The effects of cell wall thickness and thermal conductivity on natural convective heat transfer within inclined rectangular cells was studied. The cell walls are thin, and the hot and cold surfaces are isothermal. The two-dimensional natural convection problem was solved using finite difference techniques. The parameters studied were cell aspect ratios (A) of 0.5 and 1, Rayleigh numbers (Ra) up to 105, a Prandtl number (Pr) of 0.72 and a tilt angle (φ) of 60 deg. These parameters are of interest in solar collectors. The numerical results are substantiated by experimental results. It was found that convection coefficients for cells with adiabatic walls are substantially higher than those for cells with conducting walls. Correlations are given for estimating the convective heat transfer across the cell and the conductive heat transfer across the cell wall. These correlations are compared with available experimental and numerical work of other authors.


Author(s):  
Jorge Saavedra ◽  
Venkat Athmanathan ◽  
Guillermo Paniagua ◽  
Terrence Meyer ◽  
Doug Straub ◽  
...  

Abstract The aerothermal characterization of film cooled geometries is traditionally performed at reduced temperature conditions, which then requires a debatable procedure to scale the convective heat transfer performance to engine conditions. This paper describes an alternative engine-scalable approach, based on Discrete Green’s Functions (DGF) to evaluate the convective heat flux along film cooled geometries. The DGF method relies on the determination of a sensitivity matrix that accounts for the convective heat transfer propagation across the different elements in the domain. To characterize a given test article, the surface is discretized in multiple elements that are independently exposed to perturbations in heat flux to retrieve the sensitivity of adjacent elements, exploiting the linearized superposition. The local heat transfer augmentation on each segment of the domain is normalized by the exposed thermal conditions and the given heat input. The resulting DGF matrix becomes independent from the thermal boundary conditions, and the heat flux measurements can be scaled to any conditions given that Reynolds number, Mach number, and temperature ratios are maintained. The procedure is applied to two different geometries, a cantilever flat plate and a film cooled flat plate with a 30 degree 0.125” cylindrical injection orifice with length-to-diameter ratio of 6. First, a numerical procedure is applied based on conjugate 3D Unsteady Reynolds Averaged Navier Stokes simulations to assess the applicability and accuracy of this approach. Finally, experiments performed on a flat plate geometry are described to validate the method and its applicability. Wall-mounted thermocouples are used to monitor the surface temperature evolution, while a 10 kHz burst-mode laser is used to generate heat flux addition on each of the discretized elements of the DGF sensitivity matrix.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Jorge Saavedra ◽  
Venkat Athmanathan ◽  
Guillermo Paniagua ◽  
Terrence Meyer ◽  
Doug Straub ◽  
...  

Abstract The aerothermal characterization of film-cooled geometries is traditionally performed at reduced temperature conditions, which then requires a debatable procedure to scale the convective heat transfer performance to engine conditions. This paper describes an alternative engine-scalable approach, based on Discrete Green’s Functions (DGF) to evaluate the convective heat flux along film-cooled geometries. The DGF method relies on the determination of a sensitivity matrix that accounts for the convective heat transfer propagation across the different elements in the domain. To characterize a given test article, the surface is discretized in multiple elements that are independently exposed to perturbations in heat flux to retrieve the sensitivity of adjacent elements, exploiting the linearized superposition. The local heat transfer augmentation on each segment of the domain is normalized by the exposed thermal conditions and the given heat input. The resulting DGF matrix becomes independent from the thermal boundary conditions, and the heat flux measurements can be scaled to any conditions given that Reynolds number, Mach number, and temperature ratios are maintained. The procedure is applied to two different geometries, a cantilever flat plate and a film-cooled flat plate with a 30 degree 0.125 in. cylindrical injection orifice with length-to-diameter ratio of 6. First, a numerical procedure is applied based on conjugate 3D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations to assess the applicability and accuracy of this approach. Finally, experiments performed on a flat plate geometry are described to validate the method and its applicability. Wall-mounted thermocouples are used to monitor the surface temperature evolution, while a 10 kHz burst-mode laser is used to generate heat flux addition on each of the discretized elements of the DGF sensitivity matrix.


Author(s):  
Patrick H. Oosthuizen ◽  
Jane T. Paul

Two-dimensional natural convective heat transfer from vertical plates has been extensively studied. However, when the width of the plate is relatively small compared to its height, the heat transfer rate can be greater than that predicted by these two-dimensional flow results. Because situations that can be approximately modelled as narrow vertical plates occur in a number of practical situations, there exists a need to be able to predict heat transfer rates from such narrow plates. Attention has here been given to a plate with a uniform surface heat flux. The magnitude of the edge effects will, in general, depend on the boundary conditions existing near the edge of the plate. To examine this effect, two situations have been considered. In one, the heated plate is imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane while in the second there are plane adiabatic surfaces above and below the heated plate but the edge of the plate is directly exposed to the surrounding fluid. The flow has been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. It has also been assumed that the flow is symmetrical about the vertical centre-plane of the plate. The solution has been obtained by numerically solving the full three-dimensional form of the governing equations, these equations being written in terms of dimensionless variables. Results have only been obtained for a Prandtl number of 0.7. A wide range of the other governing parameters have been considered for both edge situations and the conditions under which three dimensional flow effects can be neglected have been deduced.


Author(s):  
Zhipeng Sun ◽  
Hongwu Zhu ◽  
Jian Hua

As a kind of unconventional gas reservoirs, shale gas reservoirs are full of potential to develop and have attracted global attention. Accompanying the exploiting of shale gas, a large amount of drilling cuttings contaminated by the oil-based drilling fluid are generated inevitably. How to deal with the drilling cuttings in a environmental-friendly way is tough especially for offshore oilfield. So it is important to investigate this aspect deeply and develop methods to clean the contaminated drilling cuttings. As is known to all, the thermal desorption technology has outstanding performance in oily cuttings cleaning. This paper bases on a kind of mechanical-thermal cuttings cleaning apparatus where the contaminated drilling cuttings are heated up by friction heat produced by the friction between the cuttings and the agitating vanes. And the harmful substance is separated from the cuttings in the agitated and high temperature flow field. This thesis investigates the fundamental of the energy conversion in the frictional process, infer formulas analyzing the thermo-physical phenomena and quantitatively model the energy conversion and thermal transmission accompanying the friction. Firstly, the principle of heat transfer and the law of conservation of energy are employed to investigate the natural law of the energy conversion in the frictional process. Based on the investigation, taking the liquid bridge between the oily cuttings and the agitating vane into account, this paper deduces the physical equations and the frictional energy model to calculate the total frictional heat, heat density and temperature distribution. Following up the frictional model, in the Eulerian-Lagrangian coupling framework, this paper develops a parallel numerical platform of computational fluid dynamics combined with discrete element method (CFD-DEM). In the coupling approach, the gas motion is solved at the computational grid level while the solid motion is resolved at the particle-scale level. Furthermore, the coupling approach is extended with the frictional energy model. The numerical platform can calculate the dense gas-solid motion in the fluidizing apparatus, the convective heat transfer between gas and solid phase, and the conductive heat transfer between particles. Based on the platform, the mechanical-thermal energy conversion and the convective heat transfer between gas and oily cuttings, and the conductive heat transfer between cuttings and the agitating vanes are investigated. Meanwhile an experiment is conducted. By comparing the numerical results with the experiment data, the paper can come to the conclusion that how to dispose the nonlinear parameters such as the friction contact area, the friction coefficient and the normal pressure is the key to accurately model the energy conversion and the heat transmission. What’s more, it can be understood that the convective heat transfer between gas and solid phase play an important role in the heat transmission.


Author(s):  
Patrick H. Oosthuizen

Most studies of convective heat transfer in window-blind systems assume that the flow over the window-blind arrangement is two-dimensional. In some cases, however, three-dimensional flow effects can become important. The present study was undertaken to determine how significant such effects can be for the particular case of a window covered by a simple plane blind. Only convective heat transfer has been considered. The situation considered is only an approximate model of the real window-blind situation. The window is represented by a rectangular vertical isothermal wall section embedded in a large vertical adiabatic plane wall surface and exposed to a large surrounding "room" in which the temperature is lower than the window temperature. The plane blind is represented by a thin vertical wall having the same size as the "window" which offers no resistance to heat transfer across it and in which conductive heat transfer is negligible. The gaps between the blind and the window at the sides and at the top of the window-blind system are assumed to be open. The flow has been assumed to be laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces. The solution has been obtained by numerically solving the three-dimensional governing equations written in dimensionless form. The effects of the dimensionless governing variables on the window Nusselt number have been numerically examined.


Sign in / Sign up

Export Citation Format

Share Document