Natural Convection Local Heat Transfer on Constant-Heat-Flux Inclined Surfaces

1969 ◽  
Vol 91 (4) ◽  
pp. 511-516 ◽  
Author(s):  
G. C. Vliet

Experimental local heat transfer data are presented for natural convection on constant-heat-flux inclined surfaces using water and air. The data extend to Grz* Pr = 1016, cover angles from the vertical to 30 deg with the horizontal, and include the laminar, transition, and turbulent regimes. In the laminar regime the data correlate well with vertical plate theory when the gravitational component parallel to the surface is used. Transition is strongly affected by inclination, the transition Grz* Pr decreasing from near 1013 for vertical surfaces to approximately 108 for a surface at 30 deg to the horizontal. The turbulent local heat transfer data correlate using the actual gravity rather than the parallel component, and indicates a change in the Grz* Pr exponent from near 0 22 for a vertical surface to approximately 1/4 as the inclination decreases. The turbulent data can be correlated quite well by Nuz = 0.30(Grz* Pr)0.24.

1984 ◽  
Vol 106 (1) ◽  
pp. 152-157 ◽  
Author(s):  
V. Prasad ◽  
F. A. Kulacki

Numerical solutions for two-dimensional, steady, free convection are presented for a rectangular cavity with constant heat flux on one vertical wall, the other vertical wall being isothermally cooled. The horizontal walls are insulated. Results are presented in terms of streamlines and isotherms, local and average Nusselt numbers at the heated wall, and the local heat flux at the cooled wall. Flow patterns are observed to be quite different from those in the case of a cavity with both vertical walls at constant temperatures. Specifically, symmetry in the flow field is absent and any increase in applied heat flux is not accompanied by linearly proportional increase in the temperature on the heated wall. Also, for low Prandtl number, the heat transfer rate based upon the mean temperature difference is higher as compared to experimental results for the isothermal case. Heat transfer results, further, indicate that the average Nusselt number is correlated by a relation of the form Nu = constant Ra*mAn, where Ra* is the Rayleigh number and A the height-to-width ratio of the cavity.


2003 ◽  
Author(s):  
Jerry G. Myers ◽  
Sam W. Hussey ◽  
Glenda F. Yee ◽  
Jungho Kim

Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms.


Sign in / Sign up

Export Citation Format

Share Document