Frequencies and Mode Shapes for Axisymmetric Vibration of Shells

1967 ◽  
Vol 34 (1) ◽  
pp. 73-80 ◽  
Author(s):  
E. W. Ross ◽  
W. T. Matthews

This paper treats the axisymmetric vibration of thin elastic shells. Estimates of natural frequencies and modes are obtained for a general class of domes by applying the approximations obtained in a previous paper by one of the authors. Numerical results are obtained for ellipsoidal shells, and one new theoretical result is found.

1990 ◽  
Vol 112 (4) ◽  
pp. 432-437 ◽  
Author(s):  
A. V. Singh ◽  
S. Mirza

Natural frequencies and mode shapes are presented for the free axisymmetric vibration of spherical shells with linearly varying thickness along the meridian. Clamped and hinged edges corresponding to opening angles 30, 45, 60 and 90 deg have been considered in this technical brief to cover a wide range from shallow to deep spherical shells. Variations in thickness are seen to have very pronounced effects on the frequencies and mode shapes.


2012 ◽  
Vol 19 (4) ◽  
pp. 679-692 ◽  
Author(s):  
Sudip Dey ◽  
Amit Karmakar

Location of delamination is a triggering parameter for structural instability of laminated composites. In this paper, a finite element method is employed to determine the effects of location of delamination on free vibration characteristics of graphite-epoxy cross-ply composite pre-twisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting Coriolis effect for moderate rotational speeds. The formulation is exercised by using an eight noded isoparametric plate bending element based on Mindlin's theory. Multi-point constraint algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Finite element codes are developed to obtain the numerical results concerning the effects of location of delamination, twist angle and rotational speed on the natural frequencies of cross-ply composite shallow conical shells. The mode shapes are also depicted for a typical laminate configuration. Numerical results obtained from parametric studies of both symmetric and anti-symmetric cross-ply laminates are the first known non-dimensional natural frequencies for the type of analyses carried out here.


Author(s):  
Zhangming Wu ◽  
Xianghong Ma ◽  
Peter N Brett ◽  
Jinwu Xu

This paper investigates the vibration characteristics of the coupling system of a microscale fluid-loaded rectangular isotropic plate attached to a uniformly distributed mass. Previous literature has, respectively, studied the changes in the plate vibration induced by an acoustic field or by the attached mass loading. This paper investigates the issue of involving these two types of loading simultaneously. Based on Lamb's assumption of the fluid-loaded structure and the Rayleigh–Ritz energy method, this paper presents an analytical solution for the natural frequencies and mode shapes of the coupling system. Numerical results for microplates with different types of boundary conditions have also been obtained and compared with experimental and numerical results from previous literature. The theoretical model and novel analytical solution are of particular interest in the design of microplate-based biosensing devices.


2003 ◽  
Vol 10 (5-6) ◽  
pp. 301-312 ◽  
Author(s):  
Eihab M. Abdel-Rahman ◽  
Waleed F. Faris ◽  
Ali H. Nayfeh

We present a numerical procedure to solve the axisymmetric vibration problem of statically loaded annular plates. We use the von Kármán nonlinear plate model to account for large deformations and study the effect of static deflections on the natural frequencies and mode shapes for six combinations of boundary conditions. The shooting method is used to solve the resulting eigenvalue problem. Our results show that static deformations have a significant effect on the natural frequencies and small effect on the mode shapes of the plate. Further, the results show that the presence of in-plane stresses has a significant effect on the natural frequencies.


2000 ◽  
Vol 123 (2) ◽  
pp. 188-197 ◽  
Author(s):  
Kenji Hosokawa ◽  
Minehiro Murayama ◽  
Toshiyuki Sakata

In a previous paper, the authors proposed a numerical approach for analyzing the free vibrations of a laminated FRP (fiber reinforced plastic) composite plate. In the present paper, this approach is modified for application to a symmetrically laminated shallow cylindrical shell having a rectangular planform. First, the natural frequencies of the shell are calculated for discussion of the convergence and accuracy of the solution. Next, the effects of the curvature ratio and stacking sequence on the natural frequencies and mode shapes of the shell are studied. Furthermore, to justify the numerical results, vibration tests of the clamped symmetrically laminated shallow cylindrical shell having a square planform are carried out. These experimental results are found to agree well with the numerical results computed using the measured material properties of the lamina.


1965 ◽  
Vol 32 (3) ◽  
pp. 553-561 ◽  
Author(s):  
E. W. Ross

This paper contains the results of an approximate analysis of the axially symmetric vibrations of deep spherical elastic shells. The approximation is based on the asymptotic formulas for Legendre functions of large degree. The results are relatively simple approximate formulas for the natural frequencies and mode shapes under a variety of boundary conditions at the shell edge. The results agree very well with values obtained by Kalnins, using numerical methods.


1988 ◽  
Vol 110 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Horst Irretier

Experimental and numerical results on the vibrations of a rotating radial impeller are presented. They show natural frequencies as a function of rotational speed, the mode shapes, the resonance excitation frequencies of the forward and backward rotating waves, and a response diagram during a run-up of the impeller.


Sign in / Sign up

Export Citation Format

Share Document