Some Results on Axisymmetric Vibration of Spherical Shells of Variable Thickness

1990 ◽  
Vol 112 (4) ◽  
pp. 432-437 ◽  
Author(s):  
A. V. Singh ◽  
S. Mirza

Natural frequencies and mode shapes are presented for the free axisymmetric vibration of spherical shells with linearly varying thickness along the meridian. Clamped and hinged edges corresponding to opening angles 30, 45, 60 and 90 deg have been considered in this technical brief to cover a wide range from shallow to deep spherical shells. Variations in thickness are seen to have very pronounced effects on the frequencies and mode shapes.

1965 ◽  
Vol 32 (3) ◽  
pp. 553-561 ◽  
Author(s):  
E. W. Ross

This paper contains the results of an approximate analysis of the axially symmetric vibrations of deep spherical elastic shells. The approximation is based on the asymptotic formulas for Legendre functions of large degree. The results are relatively simple approximate formulas for the natural frequencies and mode shapes under a variety of boundary conditions at the shell edge. The results agree very well with values obtained by Kalnins, using numerical methods.


2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


1996 ◽  
Vol 118 (2) ◽  
pp. 141-146 ◽  
Author(s):  
S. Abrate

While many advances were made in the analysis of composite structures, it is generally recognized that the design of composite structures must be studied further in order to take full advantage of the mechanical properties of these materials. This study is concerned with maximizing the fundamental natural frequency of triangular, symmetrically laminated composite plates. The natural frequencies and mode shapes of composite plates of general triangular planform are determined using the Rayleigh-Ritz method. The plate constitutive equations are written in terms of stiffness invariants and nondimensional lamination parameters. Point supports are introduced in the formulation using the method of Lagrange multipliers. This formulation allows studying the free vibration of a wide range of triangular composite plates with any support condition along the edges and point supports. The boundary conditions are enforced at a number of points along the boundary. The effects of geometry, material properties and lamination on the natural frequencies of the plate are investigated. With this stiffness invariant formulation, the effects of lamination are described by a finite number of parameters regardless of the number of plies in the laminate. We then determine the lay-up that will maximize the fundamental natural frequency of the plate. It is shown that the optimum design is relatively insensitive to the material properties for the commonly used material systems. Results are presented for several cases.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Xiaolei Song ◽  
Haijun Liu

Abstract Bistable clamped–clamped beams have been used in a wide range of applications such as switches, resonators, energy harvesting, and vibration reduction. Most studies on this classic buckling problem focus on obtaining either the static configuration and the required critical axial load or the natural frequencies and mode shapes of postbuckling vibrations analytically. In this article, we present our study including analytical modeling and experimental method on bistable clamped–clamped beams, aiming to understand the detailed snap-through process and the ensuing vibration. In the analytical model, by decomposing the transverse deflection into static buckling configuration and linear vibration, we obtain the natural frequencies and mode shapes for the buckled beam and investigate the effects of static deflection on the symmetric and antisymmetric modes. An experimental design using noncontact methods is implemented to directly measure the response of the whole beam in the snap-through process and the sound generated by the vibrating beam. The measurements are characterized in both time and frequency domain and found to be in good agreement with the analytical model. The study presented in this article enhances the fundamental understanding of the classical problem of bistable clamped–clamped beams.


Author(s):  
Bashar K. Hammad ◽  
Ali H. Nayfeh ◽  
Eihab Abdel-Rahman

We present a reduced-order model and closed-form expressions describing the response of a micromechanical filter made up of two clamped-clamped microbeam capacitive resonators coupled by a weak microbeam. The model accounts for geometrical and electrical nonlinearities as well as the coupling between them. It is obtained by discretizing the distributed-parameter system using the Galerkin procedure. The basis functions are the linear undamped global mode shapes of the unactuated filter. Closed-form expressions for these mode shapes and the coressponding natural frequencies are obtained by formulating a boundary-value problem (BVP) that is composed of five equations and twenty boundary conditions. This problem is transformed into solving a system of twenty linear homogeneous algebraic equations for twenty constants and the natural frequencies. We predict the deflection and the voltage at which the static pull-in occurs by solving another boundary-value problem (BVP). We also solve an eigenvalue problem (EVP) to determine the two natural frequencies delineating the bandwidth of the actuated filter. Using the method of multiple scales, we determine four first-order nonlinear ODEs describing the amplitudes and phases of the modes. We found a good agreement between the results obtained using our model and the published experimental results. We found that the filter can be tuned to operate linearly for a wide range of input signal strengths by choosing a DC voltage that makes the effective nonlinearities vanish.


2005 ◽  
Vol 05 (03) ◽  
pp. 387-408 ◽  
Author(s):  
N. BHARDWAJ ◽  
A. P. GUPTA

This paper is concerned with the axisymmetric vibration problem of polar orthotropic circular plates of quadratically varying thickness and resting on an elastic foundation. The problem is solved by using the Rayleigh–Ritz method with boundary characteristic orthonormal polynomials for approximating the deflection function. Numerical results are computed for frequencies, nodal radii and mode shapes. Three-dimensional graphs are also plotted for the first four normal modes of axisymmetric vibration of plates with free, simply-supported and clamped edge conditions for various values of taper, orthotropy and foundation parameters.


1967 ◽  
Vol 89 (1) ◽  
pp. 23-29 ◽  
Author(s):  
D. A. Frohrib ◽  
R. Plunkett

The natural frequencies of lateral vibration of a long drill string in static tension under its own weight are primarily the same as those of the equivalent catenary. These frequencies and the mode shapes are affected to a certain extent by the bending stiffness and to a greater extent by the static deflection curve due to lateral deflection of the bottom end. In this paper, the governing equations are derived and general solutions are given in an asymptotic expansion with the bending stiffness as the parameter. Specific numerical results are given in dimensionless form for the first three natural frequencies for a very wide range of horizontal tension and several appropriate values of bending stiffness for zero vertical static force at the bottom.


2003 ◽  
Vol 10 (5-6) ◽  
pp. 301-312 ◽  
Author(s):  
Eihab M. Abdel-Rahman ◽  
Waleed F. Faris ◽  
Ali H. Nayfeh

We present a numerical procedure to solve the axisymmetric vibration problem of statically loaded annular plates. We use the von Kármán nonlinear plate model to account for large deformations and study the effect of static deflections on the natural frequencies and mode shapes for six combinations of boundary conditions. The shooting method is used to solve the resulting eigenvalue problem. Our results show that static deformations have a significant effect on the natural frequencies and small effect on the mode shapes of the plate. Further, the results show that the presence of in-plane stresses has a significant effect on the natural frequencies.


2007 ◽  
Vol 129 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Thomas A. Duffey ◽  
Jason E. Pepin ◽  
Amy N. Robertson ◽  
Michael L. Steinzig ◽  
Kimberly Coleman

Numerous theoretical investigations on the natural frequencies for complete spherical shells have been reported over the past four decades. However, attempts at correlating the theoretical results with either experimental or simulated results (both for axisymmetric and nonaxisymmetric modes of vibration) are almost completely lacking. In this paper, natural frequencies and mode shapes obtained from axisymmetric and nonaxisymmetric theories of vibration of complete spherical shells and from finite element computer simulations of the vibrations, with and without geometrical imperfections, are presented. Modal tests reported elsewhere on commercially available, thin spherical marine floats (with imperfections) are then utilized as a basis for comparison of frequencies to both the theoretical and numerical results. Because of the imperfections present, “splitting” of frequencies of nonaxisymmetric modes is anticipated. The presence of this frequency splitting phenomenon is demonstrated. In addition, results of a “whole field” measurement on one of the imperfect shells using dynamic holography are presented.


Sign in / Sign up

Export Citation Format

Share Document