The Dominant Unstable Wavelength and Minimum Heat Flux During Film Boiling on a Horizontal Cylinder

1964 ◽  
Vol 86 (2) ◽  
pp. 220-225 ◽  
Author(s):  
J. H. Lienhard ◽  
P. T. Y. Wong

Predictions of the dominant unstable wavelength and the minimum heat flux during film boiling above a flat plate are found to be inapplicable in the case of boiling on small wires. New expressions are developed for the case of a horizontal cylinder, by accounting for the effect of surface tension in the transverse direction upon the Taylor instability of the interface. Original measurements of wavelengths and minimum heat fluxes on small wires are also provided. These data support the predictions.

1980 ◽  
Vol 102 (2) ◽  
pp. 335-341 ◽  
Author(s):  
F. S. Gunnerson ◽  
A. W. Cronenberg

An analytical method is presented for predicting the minimum heater temperature and the minimum heat flux at the onset of film boiling for spherical and flat plate heaters in saturated and subcooled liquids. Consideration is given to a variety of factors known to affect the minimum film boiling point, including transient liquid-heater contact, interfacial wettability, heater geometry, and liquid subcooling. The theoretical correlations developed are the first known predictions for spherical geometries. A comparison of theory with experimental data indicates good agreement for the minimum heat flux and the minimum film boiling temperature. Results indicate that the minimum conditions may span a wide range depending upon the thermophysical nature of the heater surface and the boiling liquid.


1969 ◽  
Vol 91 (3) ◽  
pp. 315-328 ◽  
Author(s):  
I. Shai ◽  
W. M. Rohsenow

Experimental data for sodium boiling on horizontal surfaces containing artificial cavities at heat fluxes of 20,000 to 300,000 Btu/ft2 hr and pressures between 40 to 106 mm Hg were obtained. Observations are made for stable boiling, unstable boiling and “bumping.” Some recorded temperature variations in the solid close to the nucleating cavity are presented. It is suggested that for liquid metals the time for bubble growth and departure is a very small fraction of the total bubble cycle, hence the delay time during which a thermal layer grows is the most significant part of the process. On this basis the transient conduction heat transfer is solved for a periodic process, and the period time is found to be a function of the degree of superheat, the heat flux and the liquid thermal properties. A simplified model for stability of nucleate pool boiling of liquid metals is postulated from which the minimum heat flux for stable boiling can be found as a function of liquid-solid properties, liquid pressure, the degree of superheat, and the cavity radius and depth. At relatively low heat fluxes, convection currents have significant effects on the period time of bubble formation. An empirical correlation is proposed, which takes into account the convection effects, to match the experimental results.


1992 ◽  
Vol 114 (1) ◽  
pp. 169-178 ◽  
Author(s):  
R. Vijaykumar ◽  
V. K. Dhir

Wall and liquid side heat fluxes near the leading edge of a vertical wall 6.3 cm wide and 10.3 cm high were measured during subcooled film boiling of water at 1 atm pressure. The heat flux from the interface into the liquid and temperature profiles in the liquid thermal layer were measured using real time holographic interferometry. The wall heat flux was measured with thermocouples embedded in a copper block, one face of which served as the heated wall. The role of the leading edge vapor layer, ripples, and large bulges in modifying the liquid side heat transfer is quantified.


Sign in / Sign up

Export Citation Format

Share Document