Superior Convective Heat Transport for Laminar Boundary Layer Flow Over a Flat Plate Using Binary Gas Mixtures With Light Helium and Selected Heavier Gases

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Antonio Campo ◽  
Salah Chikh ◽  
Mohammad M. Papari ◽  
Mohammad R. Mobinipouya

Abstract This paper addresses the laminar boundary layer flow of certain binary gas mixtures along a heated flat plate. To form the binary gas mixtures, light helium (He) is the primary gas and the heavier secondary gases are nitrogen (N2), oxygen (O2), xenon (Xe), carbon dioxide (CO2), methane (CH4), tetrafluoromethane (CF4), and sulfur hexafluoride (SF6). The central objective of this paper is to investigate the potential of this group of binary gas mixtures for heat transfer intensification. From fluid physics, two thermophysical properties, i.e., viscosity η and density ρ, influence the fluid flow, whereas four thermophysical properties, i.e., viscosity η, thermal conductivity λ, density ρ, and heat capacity at constant pressure Cp, affect the forced convective heat transfer. The heat transfer augmentation from the flat plate is pursued by stimulating the forced convection mode as a whole. In this regard, it became necessary to construct a specific correlation equation to handle binary gas mixtures owing Prandtl number Pr∊(0.1,1). Whenever there is heat transfer invigoration in forced flow, drag force accretion seems to be inevitable. A standard formula for estimating the drag force Fd exerted on the flat plate is available from the fluid dynamics literature. The descriptive equations for the heat transfer rate Qmix and drag force Fd,mix associated with the seven binary gas mixtures are channeled through the four thermophysical properties, i.e., density ρmix, viscosity ηmix, thermal conductivity λmix, and heat capacity at constant pressure Cp,mix, which depend on the molar gas composition w. Two case studies suffice to elucidate the modified convective heat and momentum transport that the binary gas mixtures bring forward. At a film temperature Tf=300 K and 1 atm, the He+SF6 mixture delivers the absolute maximum for the relative heat transfer Qmix,abs max/B=16.71 at an optimal molar gas composition wopt=0.96. When compared with the light primary He gas with a relative heat transfer rate QHe/B=12.04, the He+SF6 mixture generates a significant heat transfer enhancement of 39%. At a film temperature Tf=600 K and the same 1 atm, the relative heat transfer QHe/B for the light primary gas He comes down to 10.77. In reference to this, the He+SF6 mixture furnishes an absolute maximum heat transfer Qmix,abs max/B=18.11 at an optimal molar gas composition wopt=0.96, yielding a remarkable heat transfer enhancement of 68%. In the global context, the usage of exotic binary gas mixtures with light helium and selected heavier gases may be envisioned for special tasks in industries that demand high heat transfer rates.

Author(s):  
Mohammad Reza Mobinipouya

This paper addresses the laminar boundary layer flow of selected binary gas mixtures along a heated flat plate. To form the binary gas mixtures, light helium (He) is the primary gas and the heavier secondary gases are nitrogen (N2), oxygen (O2), xenon (Xe), carbon dioxide (CO2), methane (CH4), tetrafluoromethane (CF4) and sulfur hexafluoride (SF6). The central objective in the work is to investigate the potential of this group of binary gas mixtures for heat transfer intensification. From fluid physics, two thermophysical properties: viscosity η and density ρ influence the fluid flow, whereas four thermophysical properties: viscosity η, thermal conductivity λ, density ρ, and heat capacity at constant pressure Cp affect the forced convective heat transfer. The heat transfer augmentation from the flat plate is pursued by stimulating the forced convection mode as a whole. In this regard, it became necessary to construct a specific correlation equation to handle binary gas mixtures owing Prandtl number Pr ∈ (0.1, 1). The rate of heat transfer Q between a heated plate and a cold fluid is calculated with: Qmix/B=λmix0.623ρmix0.500Cp,mix0.377ηmix0.123(1) If the surface area of the plate A and the temperature difference Tw–T∞ are specified, the only possible way for intensifying the rate of heat transfer Q is by enlarging the magnitude of the average heat transfer coefficient h. This is precisely the main goal to be pursued in the present paper. The average heat transfer coefficient h in laminar boundary layer flows of incompressible, viscous fluids along heated flat plates depends on the dimensionless fluid temperature gradient at the plate θ′(0). It is given by the Prandtl number function f (Pr).


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Xin Li ◽  
Jiang Qin ◽  
Silong Zhang ◽  
Naigang Cui ◽  
Wen Bao

Microrib is a very promising heat transfer enhancement method for the design of scramjet regenerative cooling channels. In this paper, a three-dimensional numerical model has been built and validated to parametrically investigate the thermal behavior of transcritical n-Decane in mini cooling channels with microribs under near critical pressure. The results have shown that the height and pitch of microrib perform a nonmonotonic effect on the convective heat transfer coefficient of n-Decane inside the cooling channel and the optimal microrib parameters stay at low values due to dramatic changes of coolant thermophysical properties in the near critical region. Due to severe thermal stratification and near critical conditions, there will be a significant recirculation zone in vertical direction near microrib, and its interaction with the strong secondary flow in axial direction caused by limited channel width of mini-channel will largely enhance the local convective heat transfer and its downstream region. Besides, the dramatically changing thermophysical properties of n-Decane will lead to a locally remarkable heat transfer enhancement phenomenon similar to impingement cooling at the front edge of microribs.


2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Amber Nehan Kashif ◽  
Zainal Abdul Aziz ◽  
Faisal Salah ◽  
K. K. Viswanathan

Boundary layer flow of convective heat transfer with pressure gradient over a flat plate is solved with an application of algorithms of Adams Method (AM) and Gear Method (GM) using Homotopy Perturbation Method (HPM). The distributions of temperature and velocity in the boundary layer are examined, particularly on the influences due to Prandtl number (Pr) and pressure gradient (m). Consequently, the equations of momentum and energy are resolved concurrently. These HPM outcomes have been compared with the previous published work in the literature; and these are found to be in good agreement with the results obtained from numerical methods.


Sign in / Sign up

Export Citation Format

Share Document