Development Length Requirements for Fully Developed Laminar Pipe Flow of Yield Stress Fluids

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
R. J. Poole ◽  
R. P. Chhabra

In this technical brief, we report the results of a systematic numerical investigation of developing laminar pipe flow of yield stress fluids, obeying models of the Bingham-type. We are able to show that using a suitable choice of the Reynolds number allows, for high Reynolds number values at least, the development length to collapse to the Newtonian correlation. On the other hand, the development length remains a weak, nonmonotonic, function of the Bingham number at small values of the Reynolds number (Re≤40).

2021 ◽  
Author(s):  
Alessandro Ceci ◽  
Sergio Pirozzoli ◽  
Joshua Romero ◽  
Massimiliano Fatica ◽  
Roberto Verzicco ◽  
...  

1984 ◽  
Vol 148 ◽  
pp. 193-205 ◽  
Author(s):  
T. R. Akylas ◽  
J.-P. Demurger

A theoretical study is made of the stability of pipe flow with superimposed rigid rotation to finite-amplitude disturbances at high Reynolds number. The non-axisymmetric mode that requires the least amount of rotation for linear instability is considered. An amplitude expansion is developed close to the corresponding neutral stability curve; the appropriate Landau constant is calculated. It is demonstrated that the flow exhibits nonlinear subcritical instability, the nonlinear effects being particularly strong owing to the large magnitude of the Landau constant. These findings support the view that a small amount of extraneous rotation could play a significant role in the transition to turbulence of pipe flow.


2019 ◽  
Vol 2019.68 (0) ◽  
pp. 217
Author(s):  
Kusano Eisuke ◽  
Noriyuki Furuichi ◽  
Wada Yuki ◽  
Yoshiyuki Tsuji

2015 ◽  
Vol 2015 (0) ◽  
pp. _1502-1_-_1502-2_
Author(s):  
Yuki WADA ◽  
Noriyuki FURUICHI ◽  
Yoshiya TERAO ◽  
Yoshiyuki TSUJI

2011 ◽  
Vol 684 ◽  
pp. 284-315 ◽  
Author(s):  
Andrew G. Walton

AbstractThe high-Reynolds-number stability of unsteady pipe flow to axisymmetric disturbances is studied using asymptotic analysis. It is shown that as the disturbance amplitude is increased, nonlinear effects first become significant within the critical layer, which moves away from the pipe wall as a result. It is found that the flow stabilizes once the basic profile has become sufficiently fully developed. By tracing the nonlinear neutral curve back to earlier times, it is found that in addition to the wall mode, which arises from a classical upper branch linear stability analysis, there also exists a nonlinear neutral centre mode, governed primarily by inviscid dynamics. The centre mode problem is solved numerically and the results show the existence of a concentrated region of vorticity centred on or close to the pipe axis and propagating downstream at almost the maximum fluid velocity. The connection between this structure and the puffs and slugs of vorticity observed in experiments is discussed.


1981 ◽  
Vol 103 (3) ◽  
pp. 456-460 ◽  
Author(s):  
C. K. G. Lam ◽  
K. Bremhorst

The high Reynolds number form of the k-ε model is extended and tested by application to fully developed pipe flow. It is established that the model is valid throughout the fully turbulent, semilaminar and laminar regions of the flow. Unlike many previously proposed forms of the k-ε model, the present form does not have to be used in conjunction with empirical wall function formulas and does not include additional terms in the k and ε equations. Comparison between predicted and measured dissipation rate in the important wall region is also possible.


2015 ◽  
Vol 81 (826) ◽  
pp. 15-00091-15-00091 ◽  
Author(s):  
Yuki WADA ◽  
Noriyuki FURUICHII ◽  
Yoshiya TERAO ◽  
Yoshiyuki TSUJI

2018 ◽  
Vol 30 (5) ◽  
pp. 055101 ◽  
Author(s):  
N. Furuichi ◽  
Y. Terao ◽  
Y. Wada ◽  
Y. Tsuji

Sign in / Sign up

Export Citation Format

Share Document