Surface Roughness Effects on Flow Boiling in Microchannels

Author(s):  
Benjamin J. Jones ◽  
Suresh V. Garimella

The influence of surface roughness on flow boiling heat transfer and pressure drop in microchannels is experimentally explored. The microchannel heat sink employed in the study consists of ten parallel, 25.4 mm long channels with nominal dimensions of 500×500 μm2. The channels were produced by saw-cutting. Two of the test piece surfaces were roughened to varying degrees with electrical discharge machining (EDM). The roughness average Ra varied from 1.4 μm for the as-fabricated, saw-cut surface to 3.9 μm and 6.7 μm for the two roughened EDM surfaces. Deionized water was used as the working fluid. The experiments indicate that the surface roughness has little influence on boiling incipience and only a minor impact on saturated boiling heat transfer coefficients at lower heat fluxes. For wall heat fluxes above 1500 kW/m2, the two EDM surfaces (3.9 μm and 6.7 μm) have similar heat transfer coefficients that were 20–35% higher than those measured for the saw-cut surface (1.4 μm). A modified Bertsch et al. [2009, “A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels,” Int. J. Heat Mass Transfer, 52, pp. 2110–2118] correlation was found to provide acceptable predictions of the flow boiling heat transfer coefficient over the range of conditions tested. Analysis of the pressure drop measurements indicates that only the roughest surface (6.7 μm) has an adverse effect on the two-phase pressure drop.

Author(s):  
Benjamin J. Jones ◽  
Suresh V. Garimella

The influence of surface roughness on flow boiling heat transfer and pressure drop in microchannels is experimentally explored. The microchannel heat sink employed in the study consists of 10 parallel, 25.4 mm long channels with nominal dimensions of 500 μm × 500 μm. The channels were produced by saw-cutting. Two of the test piece surfaces were roughened to varying degrees with electrical discharge machining (EDM). The roughness average, Ra, varied from 1.4 μm for the as-fabricated, saw-cut surface to 3.9 and 6.7 μm for the two roughened EDM surfaces. Deionized water was used as the working fluid. Experiments indicate that the surface roughness has little influence on boiling incipience and only a minor impact on saturated boiling heat transfer coefficients at lower heat fluxes. For wall heat fluxes above 1500 kW/m2, the two EDM surfaces (3.9 and 6.7 μm) have similar heat transfer coefficients that were 20 to 35% higher than those measured for the saw cut surface (1.4 μm). Analysis of the pressure drop measurements indicates that only the roughest surface (6.7 μm) has an adverse effect on the two-phase pressure drop.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Chang Yong Park ◽  
Pega Hrnjak

Abstract C O 2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of −15°C and −30°C, mass fluxes of 200kg∕m2s and 400kg∕m2s, and heat flux from 5kW∕m2 to 15kW∕m2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kg∕m2s. However, enhanced convective boiling contribution was observed at 400kg∕m2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.


Author(s):  
Lihong Wang ◽  
Min Chen ◽  
Manfred Groll

Flow boiling heat transfer characteristics of R134a were experimentally investigated in a horizontal stainless steel mini-tube. The inner diameter of the test tube is 1.3 mm and the tube wall thickness is 0.1 mm. Local heat transfer coefficients are obtained over a range of vapor qualities up to 0.8, mass fluxes from 310 to 860 kg/m2s, heat fluxes from 21 to 50 kW/m2, and saturation pressures from 6.5 to 7.5 bar. The mass flux, heat flux, saturation pressure, and vapor quality dependences of heat transfer coefficients are demonstrated. Based on an available model in recent literature potential heat transfer mechanisms are also analyzed.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Kwang-Hyun Bang ◽  
Kun-Eui Hong ◽  
In-Seon Hwang

This paper reports an experimental study on flow boiling of water in a minichannel. Flow boiling heat transfer coefficients and pressure drops were measured and the data were compared with existing correlations. The effect of pressure was the major objectives in this study and the range of pressure was 1 to 18 bars. The experimental apparatus consisted mainly of a minichannel test section, gear pump, pre-heater, pressurizer, condenser and evaporator. The evaporator was used for variation of vapor quality at the inlet of test section. The pressurizer controls the desired system pressure. The test section is a round tube of 1.73 mm inside diameter, made of 316 stainless steel. The test section and the evaporator tubes were heated by DC electric current through the tubes. The measured flow boiling heat transfer coefficients showed two distinct regions; relatively high heat transfer coefficients at low vapor quality and lower heat transfer coefficients at higher vapor quality. This observation implies the change of flow regime, slug to annular flow. Comparisons of the experimental data and the prediction of correlations (Gungor & Winterton, 1987; Tran et al., 1996; Kandlikar, 2003) showed large discrepancy in both regions.


Author(s):  
Koichi Hata ◽  
Suguru Masuzaki

The subcooled boiling heat transfer (HT) and the steady-state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G = 4016 to 13850 kg/m2s), inlet liquid temperatures (Tin = 285.82 to 363.96 K), outlet pressures (Pout = 764.76 to 889.02 kPa) and exponentially increasing heat input (Q = Q0exp(t/τ), τ = 8.5 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d = 6 mm), heated length (L = 59.5 mm), effective length (Leff = 49.1 mm), L/d (= 9.92), Leff/d (= 8.18) and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) is used in this work. The SUS304 twisted tape with twist ratio, y [= H/d = (pitch of 180° rotation)/d], of 3.39 is used. The relation between inner surface temperature and heat flux for the SUS304-tube with the twisted-tape insert are clarified from non-boiling to CHF. The subcooled boiling heat transfer for SUS304-tube with the twisted-tape insert is compared with our empty SUS304-tube data and the values calculated by our and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details and the widely and precisely predictable correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tube with twisted-tape insert are given based on the experimental data. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work within −25 to +15% difference.


Author(s):  
Fernando Neves Quintino dos Santos ◽  
Matheus Barroso ◽  
Juan Jose Garcia Pabon ◽  
Hélio Augusto Goulart Diniz ◽  
Paulo Eduardo Lopes Barbieri

Sign in / Sign up

Export Citation Format

Share Document