Generalization of the Heat Transfer Coefficient Concept for System Simulation

2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Mohamed-Nabil Sabry

Large progress has been realized in modeling conduction heat transfer problems over the past decade by the introduction of high performance compact thermal models (CTMs) mainly developed for thermal design of complicated electronic systems. The objective of this paper is to generalize these advances to convective heat transfer. A new convective CTM is proposed, which offers many advantages over the traditional approach using the heat transfer coefficient (HTC). The latter is simply a zeroth order CTM. The HTC is quite handy and simple, but with unpredictable errors. It can be suitable for hand calculations of simple systems giving rather crude estimates. For a higher precision, users have no other option than time consuming 3D simulations. For large systems, in terms of number of components, 3D simulations can be rapidly impractical. The CTM bridges the gap between both approaches going gradually from “HTC” levels (low precision and calculations time) at the zeroth order, to 3D simulation precision and computing time levels at large orders. Fortunately, like for conduction, a CTM of order of few tens quickly approaches 3D simulation precision levels, while keeping computation time significantly lower than 3D simulation. Moreover, the CTM approach solves conjugate heat transfer problems in a quite elegant way. A “black box” model, developed for fluid domain alone, can be easily combined with classical CTM conduction models to generate good precision predictions for any combination of fluid/solid domains.

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 504-511
Author(s):  
Satoshi Namiki ◽  
Tomoya Iino ◽  
Yoshifumi Okamoto

AbstractWith the development of electrical machines for achieving higher performance and smaller size, heat generation in electrical machines has also increased. Consequently, the temperature rise in electrical machines causes unexpected heating of components and makes it difficult to operate properly. Therefore, in the development of electrical machines, the accurate evaluation of temperature increase is important. In the thermal design of electrical machines, heat-conduction analysis using the heat-transfer boundary set on the surface of a heated target has been frequently performed. However, because the heat-transfer coefficient is dependent on various factors, it is often determined based on experimental or numerical simulation results. Therefore, setting the heat-transfer coefficient to a constant value for the surface of the heated target degrades the analysis accuracy because the actual phenomenon cannot be modeled. To enhance the accuracy of the heat-transfer coefficient, the coupled electromagnetic field with heat-conduction analysis finite element method (FEM), thermal-fluid analysis using FEM, and the highly simplified marker and cell method is applied to the estimation of the distribution of the heat-transfer coefficient. Moreover, to accurately calculate the localized heat-transfer coefficient, the temperature distribution and flow velocity distribution around the heated target are analyzed in the induction-heating apparatus.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


2014 ◽  
Vol 552 ◽  
pp. 55-60
Author(s):  
Zheng Ming Tong ◽  
Peng Hou ◽  
Gui Hua Qin

In this article, we use BR0.3 type plate heat exchanger for experiment,and the heat transfer coefficient of the mixed plate heat exchanger is explored. Through the test platform of plate heat exchanger, a large number of experiments have been done in different mixed mode but the same passageway,and lots experimental data are obtained. By the linear fitting method and the analysis of the data, the main factors which influence the heat transfer coefficient of mixed plate heat exchanger were carried out,and the formula of heat transfer coefficient which fits at any mixed mode plate heat exchanger is obtained, to solve the problem of engineering calculation.The fact , there is no denying that the result which we get has great engineering significance


Author(s):  
Magdalena Jaremkiewicz

Purpose The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure elements. Design/methodology/approach An inverse marching method is proposed to determine the transient temperature of the thick-walled element inner surface with high accuracy. Findings Initially, the inverse method was validated computationally. The comparison between the temperatures obtained from the solution for the direct heat conduction problem and the results obtained by means of the proposed inverse method is very satisfactory. Subsequently, the presented method was validated using experimental data. The results obtained from the inverse calculations also gave good results. Originality/value The advantage of the method is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the local temperature distribution measured on the insulated outer surface. The heat transfer coefficient determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The proposed method can be used in online computer systems to monitor temperature and thermal stresses in thick-walled pressure components because the computing time is very short.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Sign in / Sign up

Export Citation Format

Share Document