Active Flow Control Concepts on a Highly Loaded Subsonic Compressor Cascade: Résumé of Experimental and Numerical Results

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Christoph Gmelin ◽  
Vincent Zander ◽  
Martin Hecklau ◽  
Frank Thiele ◽  
Wolfgang Nitsche ◽  
...  

This paper presents experimental and numerical results for a highly loaded, low speed, linear compressor cascade with active flow control. Three active flow control concepts employing steady jets, pulsed jets, and zero mass flow jets (synthetic jets) are investigated at two different forcing locations: at the end walls and the blade suction side. Investigations are performed at the design incidence for jet-to-inlet velocity ratios of approximately 0.7 to 3.0 and two different Reynolds numbers. Detailed flow field data are collected using a five-hole pressure probe, pressure tabs on the blade surfaces, and time-resolved particle image velocimetry. Unsteady Reynolds-Averaged Navier-Stokes simulations are performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. Variation of jet amplitude, forcing frequency and blowing angle of the different control concepts at both locations allows determination of beneficial control parameters and offers a comparison between similar control approaches. This paper combines the advantages of an expensive yet reliable experiment and a fast but limited numerical simulation. Excellent agreement in control effectiveness is found between experiment and simulation.

Author(s):  
Christoph Gmelin ◽  
Vincent Zander ◽  
Martin Hecklau ◽  
Frank Thiele ◽  
Wolfgang Nitsche ◽  
...  

The paper presents experimental and numerical results for a highly loaded, low speed, linear compressor cascade with active flow control. Three active flow control concepts by means of steady jets, pulsed jets, and zero mass flow jets (synthetic jets) are investigated at two different forcing locations, i.e. at the end walls and the blade suction side. Investigations are performed at the design incidence for jet-to-inlet velocity ratios from approximately 0.7 to 3.0 and two different Reynolds numbers. Detailed flow field data are collected using a five-hole pressure probe, pressure tabs on the blade surfaces, and time-resolved particle image velocimetry. Unsteady Reynolds-Averaged Navier-Stokes simulations are performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. Variation of jet amplitude, forcing frequency, and blowing angle of the different control concepts at both locations allows determination of beneficial control parameters and offers a comparison between similar control approaches. The paper combines the advantages of an expensive but accurate experiment and a fast but limited numerical simulation.


Author(s):  
M Hecklau ◽  
C Gmelin ◽  
W Nitsche ◽  
F Thiele ◽  
A Huppertz ◽  
...  

This article presents experimental and numerical results for a compressor cascade with active flow control. Steady and pulsed blowing has been used to control the secondary flow and separation characteristics of a highly loaded controlled diffusion airfoil. Investigations were performed at the design incidence for blowing ratios from approximately 0.7 to 3.0 (jet-to-inlet velocity) and a Reynolds number of 840 000 (based on axial chord and inlet velocity). Detailed flow field data were collected using a five-hole pressure probe, pressure taps on the blade surfaces, and time-resolved Particle Image Velocimetry. Unsteady Reynolds-averaged Navier–Stokes simulations were performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. The benefit of the flow control on the cascade performance is weighted against the costs of the actuation by introducing an efficiency which takes the presence of the jets into account.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Arne Vorreiter ◽  
Susanne Fischer ◽  
Horst Saathoff ◽  
Rolf Radespiel ◽  
Joerg R. Seume

Airfoil active flow control has been attempted in the past in order to increase the permissible loading of boundary layers in gas turbine components. The present paper presents a stator with active flow control for a high-speed compressor using a Coanda surface near the trailing edge in order to inhibit boundary layer separation. The design intent is to reduce the number of vanes while—in order to ensure a good matching with the downstream rotor—the flow turning angle is kept constant. In a first step, numerical simulations of a linear compressor cascade with circulation control are conducted. The Coanda surface is located behind an injection slot on the airfoil suction side. Small blowing rates lead to a gain in efficiency associated with a rise in static pressure. In a second step, this result is transferred to a four-stage high-speed research compressor, where the circulation control is applied in the first stator. The design method and the first results are based on steady numerical calculations. The analysis of these results shows performance benefits of the concept. For both the cascade and the research compressor, the pressure gain and efficiency are shown as a function of blowing rate and jet power ratio. The comparison is performed based on a dimensionless efficiency, which takes into account the change in power loss.


Author(s):  
Daniel Nerger ◽  
Horst Saathoff ◽  
Rolf Radespiel ◽  
Volker Gu¨mmer ◽  
Carsten Clemen

The following paper describes an experimental investigation of a highly loaded stator cascade with a pitch to chord ratio of t/l = 0.6. Experiments without as well as with active flow control by means of endwall and suction side blowing were conducted. Five-hole-probe measurements in pitchwise and spanwise direction as well as endwall oil flow visualizations were carried out in order to determine the performance of the cascade and to analyze the flow phenomena occuring. To quantify the effectivity of the active flow control method, taking the additional energy input into account, corrected losses and an efficiency, which relates the difference of flow power deficit with and without active flow control to the flow power of the blowing jet itself, were evaluated. Even though an increase of static pressure rise could be achieved, a decrease of the total pressure losses was possible for a few operating points only.


Author(s):  
Julia Kurz ◽  
Reinhard Niehuis

One application method of active flow control is the exploitation of the interaction between transition and flow separation on a profile. As turbulent flows are able to withstand higher adverse pressure gradients the enforcement of the transition process can be utilized to prevent or to reduce flow separation. This paper focuses on gaining a better understanding of high frequency active flow control (AFC) by fluidic oscillators and its influence on the transition process for a separated boundary layer. Flow control is applied on a highly loaded turbine exit case (TEC) profile which was in particular designed for this application. The profile is investigated in the high-speed cascade wind tunnel at the Bundeswehr University Munich. Significant loss reduction by AFC could be observed by total pressure loss determination in the low Reynolds number regime. In order to gain a better understanding of development of the suction side boundary layer, several boundary layer profiles are determined by hot-wire measurements at six axial positions on the suction side of the profile. Differences between the boundary layer development and the extent of the separation can be detected. Furthermore, a stability analysis of the boundary layer upstream of separation is conducted and compared to the measured frequency spectra.


Author(s):  
A. Vorreiter ◽  
S. Fischer ◽  
H. Saathoff ◽  
R. Radespiel ◽  
J. R. Seume

Airfoil active flow control has been attempted in the past in order to increase the permissible loading of boundary layers in gas turbine components. The present paper presents a stator with active flow control for a high speed compressor using a Coanda surface near the trailing edge in order to inhibit boundary layer separation. The design intent is to reduce the number of vanes while — in order to ensure a good matching with the downstream rotor — the flow turning angle is kept constant. In a first step, numerical simulations of a linear compressor cascade with circulation control are conducted. The Coanda surface is located behind an injection slot on the airfoil suction side. Small blowing rates lead to a gain in efficiency associated with a rise in static pressure. In a second step, this result is transferred to a 4-stage high speed research compressor, where the circulation control is applied in the first stator. The design method and the first results are based on steady numerical calculations. The analysis of these results shows performance benefits of the concept. For both, the cascade and the research compressor, the pressure gain and efficiency are shown as a function of blowing rate and jet power ratio. The comparison is performed based on a dimensionless efficiency which takes into account the change of power loss.


Author(s):  
Christoph Gmelin ◽  
Mathias Steger ◽  
Frank Thiele ◽  
Andre´ Huppertz ◽  
Marius Swoboda

A highly loaded compressor cascade is analyzed by means of time-resolved 3D RANS simulations. Due to the low aspect ratio of the cascade, strong three-dimensional effects emerge, such as large corner vortices and trailing edge separation at the midspan. The feasibility of the simulation using a commercial software and the applicability of controlling the separated regions using zero net mass flux synthetic jets is analyzed. The work includes two control concepts that are investigated separately. One aims to affect the secondary flow emerging from the sidewalls via actuation at the cascade casing walls. The other aims to reattach the separated flow to the blade suction side using an actuator on the blade. Beneficial flow control parameters characterizing a synthetic jet are determined for both locations by a systematic variation. Special attention is drawn to the global efficiency of the stator cascade by means of total pressure loss and pressure rise.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Daniel Nerger ◽  
Horst Saathoff ◽  
Rolf Radespiel ◽  
Volker Gümmer ◽  
Carsten Clemen

The following paper describes an experimental investigation of a highly loaded stator cascade with a pitch to chord ratio of t/l=0.6. Experiments without as well as with active flow control by means of endwall and suction side blowing were conducted. Five-hole-probe measurements in pitchwise and spanwise directions as well as endwall oil flow visualizations were carried out in order to determine the performance of the cascade and to analyze the flow phenomena occurring. To quantify the effectivity of the active flow control method, taking the additional energy input into account, corrected losses and an efficiency, which relates the difference of flow power deficit with and without active flow control to the flow power of the blowing jet itself, were evaluated. Even though an increase of static pressure rise could be achieved, a decrease of the total pressure losses was possible for a few operating points only.


Sign in / Sign up

Export Citation Format

Share Document