Effect of Flow Pulsation on the Heat Transfer Performance of a Minichannel Heat Sink

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Tim Persoons ◽  
Tom Saenen ◽  
Tijs Van Oevelen ◽  
Martine Baelmans

Heat sinks with liquid forced convection in microchannels are targeted for cooling electronic devices with a high dissipated power density. Given the inherent stability problems associated with two-phase microchannel heat transfer, this paper investigates experimentally the potential for enhancing single-phase convection cooling rates by applying pulsating flow. To this end, a pulsator device is developed which allows independent continuous control of pulsation amplitude and frequency. For a single minichannel geometry (1.9 mm hydraulic diameter) and a wide range of parameters (steady and pulsating Reynolds number, Womersley number), experimental results are presented for the overall heat transfer enhancement compared to the steady flow case. Enhancement factors up to 40% are observed for the investigated parameter range (Reynolds number between 100 and 650, ratio of pulsating to steady Reynolds number between 0.002 and 3, Womersley number between 6 and 17). Two regimes can be discerned: for low pulsation amplitude (corresponding to a ratio of pulsating to steady Reynolds number below 0.2), a small heat transfer reduction is observed similar to earlier analytical and numerical predictions. For higher amplitudes, a significant heat transfer enhancement is observed with a good correspondence to a power law correlation. This work establishes a reference case for future studies of the effect of flow unsteadiness in small scale heat sinks.

2012 ◽  
Vol 516-517 ◽  
pp. 249-252 ◽  
Author(s):  
Bing Chang Yang ◽  
Dong Xu Jin

Heat transfer enhancement by pulsating flow in a triangular grooved channel has been experimentally investigated. Effects of Reynolds number Re, Strouhal number St, pulsation amplitude A on the heat transfer enhancement were studied. The experimental results show that, the pulsating flow can significantly enhance heat transfer compared to the steady flow case, for instance, an enhancement of 115% is achieved at Re=400, A=0.5 and St=0.3. There exists an optimal Strouhal number corresponding to the maximum heat transfer enhancement factor. The heat transfer enhancement factor increases with the increase of Reynolds number and pulsation amplitude.


Experiments were conducted to investigate the cooling of processor to increase the thermal performance by employing a mini channel instead of conventional heat sinks. Now a day’s aluminium fin with fans is used for cooling the processor. Constant speed of the fans is found to be not enough to remove the heat generated by the processor. The experimental investigations were carried out in the channels with the hydraulic diameter of about 1.5x10-3m for the Reynolds number varying from 80 to 1150. The water is allowed to pass through the channel by virtue of which heat is rejected from the processor. The influence of Reynolds number on heat transfer enhancement from the microprocessor is discussed in details. Comparison between heat transfer by air and by water is presented. From the experiment it is disclosed that further increase in heat transfer was observed when compared to air.


1996 ◽  
Vol 118 (3) ◽  
pp. 555-561 ◽  
Author(s):  
Cheng-Xian Lin ◽  
Shao-Yen Ko ◽  
F. K. Tsou

This paper presents results of an experimental study on the heat transfer enhancement in laminar flow of non-Newtonian fluids, aqueous Carbopol-934 solutions through a small-scale square duct. The square duct is a top-wall heated configuration with a hydraulic diameter of 0.4 cm. The aqueous Carbopol solutions examined are those neutralized, and have a polymer concentration range of 1000–2000 wppm. It is shown that the enhanced heat transfer behavior of the Carbopol solutions within low Reynolds number range is different from that within relatively high Reynolds number range. There exists a limiting polymer concentration, Cmax, at which the non-Newtonian fluid possesses the maximum ability to enhance heat transfer. If the polymer concentration becomes too high, the minimum Reynolds number required to enhance heat transfer increases with the increasing polymer concentration.


2021 ◽  
Author(s):  
Jingtian Duan ◽  
Ke Zhang ◽  
Jin Xu ◽  
Jiang Lei ◽  
Junmei Wu

Abstract Particle Image Velocimetry (PIV) was used to measure the flow field of staggered square pin-fin array in a wide rectangle channel (AR = 4). The experiment was conducted at two Reynolds number, 10000 and 20000, based on the hydraulic diameter and bulk velocity of the channel. The distribution of flow field properties was compared with that of Nu to analysis the key flow physics driving heat transfer enhancement in channel with square pin fin. The Nusselt number was achieved through temperature measurement using thermochromic liquid crystal in the same geometry setup. Results were compared with those for circular pin fin to study the effect of geometry on flow physics driving heat transfer enhancement. It was found that the wake length of square pin fin is longer than that of circular pin fin, which indicated flow around square pin fin requires longer distance to develop. Compared to circular pin fin, small scale disturbances in the shear layer of square pin fin show its contribution to local end wall heat transfer enhancement. Large motions benefit end wall heat transfer more effectively at lower Re. Small scale unsteadiness contributes more to heat transfer augment as flow develops or Reynolds number increases while large scale motions get weaker.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3723
Author(s):  
Barah Ahn ◽  
Vikram C. Patil ◽  
Paul I. Ro

Heat transfer enhancement techniques used in liquid piston gas compression can contribute to improving the efficiency of compressed air energy storage systems by achieving a near-isothermal compression process. This work examines the effectiveness of a simultaneous use of two proven heat transfer enhancement techniques, metal wire mesh inserts and spray injection methods, in liquid piston gas compression. By varying the dimension of the inserts and the pressure of the spray, a comparative study was performed to explore the plausibility of additional improvement. The addition of an insert can help abating the temperature rise when the insert does not take much space or when the spray flowrate is low. At higher pressure, however, the addition of spacious inserts can lead to less efficient temperature abatement. This is because inserts can distract the free-fall of droplets and hinder their speed. In order to analytically account for the compromised cooling effects of droplets, Reynolds number, Nusselt number, and heat transfer coefficients of droplets are estimated under the test conditions. Reynolds number of a free-falling droplet can be more than 1000 times that of a stationary droplet, which results in 3.95 to 4.22 times differences in heat transfer coefficients.


2012 ◽  
Vol 55 (9-10) ◽  
pp. 2559-2570 ◽  
Author(s):  
Tu-Chieh Hung ◽  
Wei-Mon Yan ◽  
Xiao-Dong Wang ◽  
Chun-Yen Chang

Sign in / Sign up

Export Citation Format

Share Document