A Novel and Accurate Ritz Formulation for Free Vibration of Rectangular and Skew Plates

2012 ◽  
Vol 79 (6) ◽  
Author(s):  
S. A. Eftekhari ◽  
A. A. Jafari

One of the major limitations of the conventional Ritz method is its difficulty in implementation to the differential equations with natural boundary conditions at the boundary points/lines. Plates involving free edges/corners and irregularly shaped plates are two historical and classical examples which show that their solutions cannot be accurately approximated by the conventional Ritz method. To solve this difficulty, a simple, novel, and accurate Ritz formulation is introduced in this paper. It is revealed that the proposed methodology can produce much better accuracy than the conventional Ritz method for rectangular plates involving free edges/corners and skew plates.

1963 ◽  
Vol 67 (629) ◽  
pp. 305-307 ◽  
Author(s):  
S. Mahalingam

The free flexural vibrations of rectangular plates with various boundary conditions have been considered by Warburton. The natural frequencies were calculated by the Rayleigh method, the mode assumed being the product of the characteristic beam functions for the given boundary conditions. Comparison with experimental results shows that the method gives reasonably good approximations. The present note describes a method of obtaining the approximately equivalent characteristic beam functions to enable Warburton's method to be extended to plates having one or more stiffeners parallel to an edge. As a numerical example expressions for the frequencies are derived for a plate, simply supported along two opposite edges, and having a central stiffener parallel to the other two free edges. The results are compared with those given in a recent note by Kirk, who solved the same problem by the Rayleigh-Ritz method, using a mode with one arbitrary parameter. In the case of the fundamental frequency of the unstiffened plate, the characteristic beam function in a direction perpendicular to the free edges is simply a constant, and the solution is less accurate than that given by the Rayleigh-Ritz method. However, numerical analysis of a square plate shows that above a certain stiffener depth the characteristic beam function method is more accurate than the Rayleigh-Ritz method. The two methods are also compared for the 2/2 mode.


2014 ◽  
Vol 06 (04) ◽  
pp. 1450043 ◽  
Author(s):  
S. CHAKRAVERTY ◽  
K. K. PRADHAN

In this paper, free vibration of functionally graded (FG) rectangular plates subject to different sets of boundary conditions within the framework of classical plate theory is investigated. Rayleigh–Ritz method is used to obtain the generalized eigenvalue problem. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any sets of boundary conditions. Material properties of the FG plate are assumed to vary continuously in the thickness direction of the constituents according to power-law form. The objective is to study the effects of constituent volume fractions, aspect ratios and power-law indices on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. Comparison with the results from the existing literature are provided for validation in special cases. Three-dimensional mode shapes are presented for FG square plates having various boundary conditions at the edges for different power-law indices. The present investigation also involves the rectangular FG plate to lay on a uniform Winkler elastic foundation. New results for the eigenfrequencies associated with foundation parameters are also reported here with the validation in special cases after checking a convergence pattern.


Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


2020 ◽  
Vol 8 (4) ◽  
pp. 994-1010
Author(s):  
Weizhi Xu

This paper investigates one kind of interpolation for scattered data by bi-cubic polynomial natural spline, in which the integral of square of partial derivative of two orders to x and to y for the interpolating function is minimal (with natural boundary conditions). Firstly, bi-cubic polynomial natural spline interpolations with four kinds of boundary conditions are studied. By the spline function methods of Hilbert space, their solutions are constructed as the sum of bi-linear polynomials and piecewise bi-cubic polynomials. Some properties of the solutions are also studied. In fact, bi-cubic natural spline interpolation on a rectangular domain is a generalization of the cubic natural spline interpolation on an interval. Secondly, based on bi-cubic polynomial natural spline interpolations of four kinds of boundary conditions, and using partition of unity technique, a Partition of Unity Interpolation Element Method (PUIEM) for fitting scattered data is proposed. Numerical experiments show that the PUIEM is adaptive and outperforms state-of-the-art competitions, such as the thin plate spline interpolation and the bi-cubic polynomial natural spline interpolations for scattered data.


Sign in / Sign up

Export Citation Format

Share Document