Optimization Based Algorithms for Uncertainty Propagation Through Functions With Multidimensional Output Within Evidence Theory

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Christian Gogu ◽  
Youchun Qiu ◽  
Stéphane Segonds ◽  
Christian Bes

Evidence theory is one of the approaches designed specifically for dealing with epistemic uncertainty. This type of uncertainty modeling is often useful at preliminary design stages where the uncertainty related to lack of knowledge is the highest. While multiple approaches for propagating epistemic uncertainty through one-dimensional functions have been proposed, propagation through functions having a multidimensional output that need to be considered at once received less attention. Such propagation is particularly important when the multiple function outputs are not independent, which frequently occurs in real world problems. The present paper proposes an approach for calculating belief and plausibility measures by uncertainty propagation through functions with multidimensional, nonindependent output by formulating the problem as one-dimensional optimization problems in spite of the multidimensionality of the output. A general formulation is first presented followed by two special cases where the multidimensional function is convex and where it is linear over each focal element. An analytical example first illustrates the importance of considering all the function outputs at once when these are not independent. Then, an application example to preliminary design of a propeller aircraft then illustrates the proposed algorithm for a convex function. An approximate solution found to be almost identical to the exact solution is also obtained for this problem by linearizing the previous convex function over each focal element.

2017 ◽  
Vol 14 (02) ◽  
pp. 1750012 ◽  
Author(s):  
Longxiang Xie ◽  
Jian Liu ◽  
Jinan Zhang ◽  
Xianfeng Man

Evidence theory has a strong capacity to deal with epistemic uncertainty, in view of the overestimation in interval analysis, the responses of structural-acoustic problem with epistemic uncertainty could be untreated. In this paper, a numerical method is proposed for structural-acoustic system response analysis under epistemic uncertainties based on evidence theory. To improve the calculation accuracy and reduce the computational cost, the interval analysis technique and radial point interpolation method are adopted to obtain the approximate frequency response characteristics for each focal element, and the corresponding formulations of structural-acoustic system for interval response analysis are deduced. Numerical examples are introduced to illustrate the efficiency of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Deng ◽  
Xi Lu ◽  
Yong Deng

This paper proposes evidence theory based methods to both quantify the epistemic uncertainty and validate computational model. Three types of epistemic uncertainty concerning input model data, that is, sparse points, intervals, and probability distributions with uncertain parameters, are considered. Through the proposed methods, the given data will be described as corresponding probability distributions for uncertainty propagation in the computational model, thus, for the model validation. The proposed evidential model validation method is inspired by the idea of Bayesian hypothesis testing and Bayes factor, which compares the model predictions with the observed experimental data so as to assess the predictive capability of the model and help the decision making of model acceptance. Developed by the idea of Bayes factor, the frame of discernment of Dempster-Shafer evidence theory is constituted and the basic probability assignment (BPA) is determined. Because the proposed validation method is evidence based, the robustness of the result can be guaranteed, and the most evidence-supported hypothesis about the model testing will be favored by the BPA. The validity of proposed methods is illustrated through a numerical example.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Chaoyang Xie ◽  
Guijie Li

Quantification of Margins and Uncertainties (QMU) is a decision-support methodology for complex technical decisions centering on performance thresholds and associated margins for engineering systems. Uncertainty propagation is a key element in QMU process for structure reliability analysis at the presence of both aleatory uncertainty and epistemic uncertainty. In order to reduce the computational cost of Monte Carlo method, a mixed uncertainty propagation approach is proposed by integrated Kriging surrogate model under the framework of evidence theory for QMU analysis in this paper. The approach is demonstrated by a numerical example to show the effectiveness of the mixed uncertainty propagation method.


2016 ◽  
Vol 866 ◽  
pp. 25-30
Author(s):  
He Sheng Tang ◽  
Jia He Mei ◽  
Wei Chen ◽  
Da Wei Li ◽  
Song Tao Xue

Various sources of uncertainty exist in concrete fatigue life prediction, such as variability in loading conditions, material parameters, experimental data and model uncertainty. In this article, the uncertainty model of concrete fatigue life prediction based on the S-N curve is built, and the evidence theory method is presented for uncertainty analysis in fatigue life prediction of concrete while considering the epistemic uncertainty of the parameter of the model. Based on the experimental of concrete four-point bending beams, the evidence theory method is applied to quantify the epistemic uncertainty stem from experimental data and model uncertainty. To improve the efficiency of computation, a method of differential evolution is adopted to speedup the works of uncertainty propagation. The efficiency and feasibility of the proposed approach are verified through a comparative analysis of probability theory.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1264
Author(s):  
Vladimir V. Uchaikin ◽  
Renat T. Sibatov ◽  
Dmitry N. Bezbatko

One-dimensional random walks with a constant velocity between scattering are considered. The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be different for positive and negative directions of the walk axis. Several special cases are considered when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin for a symmetric random walk with exponential path distribution and its generalization to the asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.


2013 ◽  
Vol 18 (7) ◽  
pp. 1393-1403 ◽  
Author(s):  
Julie Clavreul ◽  
Dominique Guyonnet ◽  
Davide Tonini ◽  
Thomas H. Christensen

2001 ◽  
Vol 53 (3) ◽  
pp. 470-488 ◽  
Author(s):  
Heinz H. Bauschke ◽  
Osman Güler ◽  
Adrian S. Lewis ◽  
Hristo S. Sendov

AbstractA homogeneous real polynomial p is hyperbolic with respect to a given vector d if the univariate polynomial t ⟼ p(x − td) has all real roots for all vectors x. Motivated by partial differential equations, Gårding proved in 1951 that the largest such root is a convex function of x, and showed various ways of constructing new hyperbolic polynomials. We present a powerful new such construction, and use it to generalize Gårding’s result to arbitrary symmetric functions of the roots. Many classical and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric functions, of interest in interior-point methods for optimization problems over related cones.


Sign in / Sign up

Export Citation Format

Share Document