Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Tunde Osholake ◽  
John Yilin Wang ◽  
Turgay Ertekin

Development of shale gas reservoirs has become an integral part of the North American gas supply. The Marcellus shale reservoir contains large untapped natural gas resources and its proximity to high demand markets along the East Coast of the United State makes it an attractive target for energy development. The economic viability of such unconventional gas development hinges on the effective stimulation of extremely low permeability reservoir rocks. Horizontal wells with multistage hydraulic fracturing technique are the stimulation method of choice and have been successful in shale gas reservoirs. However, the fundamental science and engineering of the process are yet to be fully understood and hence the protocol that needs to be followed in the stimulation process needs to be optimized. There are several factors affecting the hydraulic fracture treatment and the postfracture gas production in shale gas reservoirs. In this paper, we used numerical reservoir simulation techniques and quantified the effect of the following pertinent factors: multiphase flow, proppant crushing, proppant diagenesis, reservoir compaction, and operating conditions on the performance of the designed multistage hydraulic fracturing process. The knowledge generated in this study is expected to enable engineers to better design fracture treatments and operators to better manage the wells in the Marcellus shale gas reservoir.

2021 ◽  
Vol 73 (08) ◽  
pp. 67-68
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201694, “Interwell Fracturing Interference Evaluation of Multiwell Pads in Shale Gas Reservoirs: A Case Study in WY Basin,” by Youwei He, SPE, Jianchun Guo, SPE, and Yong Tang, Southwest Petroleum University, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The paper aims to determine the mechanisms of fracturing interference for multiwell pads in shale gas reservoirs and evaluate the effect of interwell fracturing interference on production. Field data of 56 shale gas wells in the WY Basin are applied to calculate the ratio of affected wells to newly fractured wells and understand its influence on gas production. The main controlling factors of fracturing interference are determined, and the interwell fracturing interacting types are presented. Production recovery potential for affected wells is analyzed, and suggestions for mitigating fracturing interference are proposed. Interwell Fracturing Interference Evaluation The WY shale play is in the southwest region of the Sichuan Basin, where shale gas reserves in the Wufeng-Longmaxi formation are estimated to be the highest in China. The reservoir has produced hydrocarbons since 2016. Infill well drilling and massive hydraulic fracturing operations have been applied in the basin. Each well pad usually is composed of six to eight multifractured horizontal wells (MFHWs). Well spacing within one pad, or the distance between adjacent well pads, is so small that fracture interference can occur easily between infill wells and parent wells. Fig. 1 shows the number of wells affected by in-fill well fracturing from 2016 to 2019 in the basin. As the number of newly drilled wells increased between 2017 and 2019, the number of wells affected by hydraulic fracturing has greatly increased. The number of wells experiencing fracturing interaction has reached 65 in the last 4 years at the time of writing.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Maxian B. Seales ◽  
Turgay Ertekin ◽  
John Yilin Wang

At the end of 2015 the U.S. held 5.6% or approximately 369 Tcf of worldwide conventional natural gas proved reserves (British Petroleum Company, 2016, “BP Statistical Review of World Energy June 2016,” British Petroleum Co., London). If unconventional gas sources are considered, natural gas reserves rise steeply to 2276 Tcf. Shale gas alone accounts for approximately 750 Tcf of the technically recoverable gas reserves in the U.S. (U.S. Energy Information Administration, 2011, “Review of Emerging Resources: U.S. Shale Gas and Shale Oil plays,” U.S. Department of Energy, Washington, DC). However, this represents only a very small fraction of the gas associated with shale formations and is indicative of current technological limits. This manuscript addresses the question of recovery efficiency/recovery factor (RF) in fractured gas shales. Predictions of gas RF in fractured shale gas reservoirs are presented as a function of operating conditions, non-Darcy flow, gas slippage, proppant crushing, and proppant diagenesis. Recovery factors are simulated using a fully implicit, three-dimensional, two-phase, dual-porosity finite difference model that was developed specifically for this purpose. The results presented in this article provide clear insight into the range of recovery factors one can expect from a fractured shale gas formation, the impact that operation procedures and other phenomena have on these recovery factors, and the efficiency or inefficiency of contemporary shale gas production technology.


Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740007 ◽  
Author(s):  
GUANGLONG SHENG ◽  
YULIANG SU ◽  
WENDONG WANG ◽  
FARZAM JAVADPOUR ◽  
MEIRONG TANG

According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length ([Formula: see text]), deviation angle ([Formula: see text]), iteration times ([Formula: see text]) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 589-600 ◽  
Author(s):  
Wei Yu ◽  
Kamy Sepehrnoori ◽  
Tadeusz W. Patzek

Summary Production from shale-gas reservoirs plays an important role in natural-gas supply in the United States. Horizontal drilling and multistage hydraulic fracturing are the two key enabling technologies for the economic development of these shale-gas reservoirs. It is believed that gas in shale reservoirs is mainly composed of free gas within fractures and pores and adsorbed gas in organic matter (kerogen). It is generally assumed in the literature that the monolayer Langmuir isotherm describes gas-adsorption behavior in shale-gas reservoirs. However, in this work, we analyzed four experimental measurements of methane adsorption from the Marcellus Shale core samples that deviate from the Langmuir isotherm, but obey the Brunauer-Emmett-Teller (BET) isotherm. To the best of our knowledge, it is the first time to find that methane adsorption in a shale-gas reservoir behaves similar to multilayer adsorption. Consequently, investigation of this specific gas-desorption effect is important for accurate evaluation of well performance and completion effectiveness in shale-gas reservoirs on the basis of the BET isotherm. The difference in calculating original gas in place (OGIP) on the basis of both isotherms is discussed. We also performed history matching with one production well from the Marcellus Shale and evaluated the contribution of gas desorption to the well's performance. History matching shows that gas adsorption obeying the BET isotherm contributes more to overall gas recovery than gas adsorption obeying the Langmuir isotherm, especially at early time in production. This work provides better understanding of gas desorption in shale-gas reservoirs and updates our current analytical and numerical models for simulation of shale-gas production.


Sign in / Sign up

Export Citation Format

Share Document