Topology Optimization of Piezoelectric Energy Harvesting Skin Using Hybrid Cellular Automata

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Soobum Lee ◽  
Andrés Tovar

An earlier study introduced the concept of piezoelectric energy-harvesting skin (EHS) to harvest energy by attaching thin piezoelectric patches onto a vibrating skin. This paper presents a methodology for the optimum design of EHS with the use of an efficient topology optimization method referred to as the hybrid cellular automaton (HCA) algorithm. The design domain of the piezoelectric material is discretized into cellular automata (CA), and the response of each CA is measured using high-fidelity finite-element analysis of a vibrating structure. The CA properties are parameterized using nonlinear interpolation functions that follow the principles of the SIMP model. The HCA algorithm finds the optimal densities and polarizing directions at each CA that maximize the output power from the EHS. The performance of this approach is demonstrated for the optimal design of EHS in two real-world case studies.

Author(s):  
Bin Zheng ◽  
Hong-Zhong Huang ◽  
Hae Chang Gea

In the past decades, the stagnant growth of battery technology becomes the bottle-neck of new generation of portable and wearable electronics which ask for longer work time and higher power consumption. Energy harvesting device based on the direct piezoelectric effect that converts ambient mechanical energy to usable electric energy is a very attractive energy source for portable and wearable electronics. This paper discusses the design of piezoelectric energy harvesting strap buckle that can generate as much as possible electric energy from the differential forces applying on the buckle. Topology optimization method is employed to improve the efficiency of piezoelectric energy harvesting strap buckle in a limited design space. A stiffness or displacement constraint is introduced to substitute material volume constraint in this problem formulation to avoid useless optimum result with nearly zero material volume. The sensitivities of both objective function and design constraint are derived from the adjoint method. A design example of piezoelectric energy harvesting strap buckle using the proposed topology optimization method is presented and the result is discussed.


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


2014 ◽  
Vol 8 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Wonho Lee ◽  
◽  
Jinhoon Kim ◽  
Changbae Park

Foam shock-absorbing structures such as cushioned packages are often utilized to protect various products from mechanical shock and vibration during transportation. The goal of packaging design engineers is to design a cushioned package structure that improves the shock-absorbing performance and minimizes the volume of the package. Some optimization techniques, combined with computational simulation, provide engineers with a way to design an optimal structure. In this paper, we propose a modified topology optimization method suitable for a polymeric foam shock-absorbing structure under dynamic drop loads in multiple directions. Our approach uses a heuristic topology optimization method, known as the Hybrid Cellular Automata (HCA). The HCA algorithm uniformly distributes internal energy density and controls the relative density of Cellular Automata (CAs) making up the design space. This allows the algorithm to maintain or increase the performance of shock absorption and to decrease the amount of material. In particular, this paper presents a modified Solid IsotropicMaterial with Penalization (SIMP) model for foam materials, which parameterizes the design region and interpolates the material properties. We attempt to optimize a simple bottom-cushioned package for a refrigerator by using the proposed foam SIMP model with commercial software: LS-DYNA for drop dynamic simulation and LS-OPT/Topology for the HCA algorithm. Drop simulation and topology optimization are performed considering multiple drop-directions. As a result, our method removes elements that are not related to the shock-absorption performance and provide an optimal cushioning structure using foam material.


Author(s):  
LianShui Guo ◽  
Jun Huang ◽  
Xuan Zhou ◽  
Andres Tovar

Structural design for crashworthiness is a challenging area of research due to large plastic deformations and complex interactions among diverse components of the vehicle. A notable idea in topology optimization is the hybrid cellular automaton (HCA) method capable of topology synthesis for crashworthiness design. The HCA algorithm was inspired by the structural adaptation of bones to their ever changing mechanical environment. This methodology has been shown to be an effective topology synthesis tool. The objective of this investigation is to examine the convergence and algorithm factors analysis of topology optimization for crashworthiness based on hybrid cellular automata paradigm. The orthogonal test is also proposed to study the effects of the algorithm factors on the dependent variables of the structure with new optimized topology. To demonstrate the convergence properties influenced by factors of the HCA algorithm in dynamic problems, the HCA framework is developed to a methodology for crashworthiness, which combines transient, non-linear finite-element analysis and local control rules acting on cells, and some simple cantilevered beam examples are utilized.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Mahidur R. Sarker ◽  
Ramizi Mohamed ◽  
Mohamad Hanif Md Saad ◽  
Muhammad Tahir ◽  
Aini Hussain ◽  
...  

This paper presents a hybrid optimization approach for the enhancement of performance of a piezoelectric energy harvesting system (PEHS). The existing PEHS shows substantial power loss during hardware implementation. To overcome the problem, this study proposes a hybrid optimization technique to improve the PEHS efficiency. In addition, the converter design as well as controller technique are enhanced and simulated in a MATLAB/Simulink platform. The controller technique of the proposed structure is connected to the converter prototype through the dSPACE DS1104 board (dSPACE, Paderborn, Germany). To enhance the proportional-integral voltage controller (PIVC) based on hybrid optimization method, a massive enhancement in reducing the output error is done in terms of power efficiency, power loss, rising time and settling time. The results show that the overall PEHS converter efficiency is about 85% based on the simulation and experimental implementations.


Sign in / Sign up

Export Citation Format

Share Document