Topology Optimization of Piezoelectric Energy Harvesting Strap Buckle

Author(s):  
Bin Zheng ◽  
Hong-Zhong Huang ◽  
Hae Chang Gea

In the past decades, the stagnant growth of battery technology becomes the bottle-neck of new generation of portable and wearable electronics which ask for longer work time and higher power consumption. Energy harvesting device based on the direct piezoelectric effect that converts ambient mechanical energy to usable electric energy is a very attractive energy source for portable and wearable electronics. This paper discusses the design of piezoelectric energy harvesting strap buckle that can generate as much as possible electric energy from the differential forces applying on the buckle. Topology optimization method is employed to improve the efficiency of piezoelectric energy harvesting strap buckle in a limited design space. A stiffness or displacement constraint is introduced to substitute material volume constraint in this problem formulation to avoid useless optimum result with nearly zero material volume. The sensitivities of both objective function and design constraint are derived from the adjoint method. A design example of piezoelectric energy harvesting strap buckle using the proposed topology optimization method is presented and the result is discussed.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Soobum Lee ◽  
Andrés Tovar

An earlier study introduced the concept of piezoelectric energy-harvesting skin (EHS) to harvest energy by attaching thin piezoelectric patches onto a vibrating skin. This paper presents a methodology for the optimum design of EHS with the use of an efficient topology optimization method referred to as the hybrid cellular automaton (HCA) algorithm. The design domain of the piezoelectric material is discretized into cellular automata (CA), and the response of each CA is measured using high-fidelity finite-element analysis of a vibrating structure. The CA properties are parameterized using nonlinear interpolation functions that follow the principles of the SIMP model. The HCA algorithm finds the optimal densities and polarizing directions at each CA that maximize the output power from the EHS. The performance of this approach is demonstrated for the optimal design of EHS in two real-world case studies.


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


2011 ◽  
Vol 55-57 ◽  
pp. 498-503
Author(s):  
Bin Zheng ◽  
Liang Ping Luo

When designing implantable biomedical MEMS devices, we must provide electric power source with long life and small size to drive the sensors and actuators work. Obviously, traditional battery is not a good choice because of its large size, limited lifetime and finite power storage. Living creatures all have non-electric energy sources, like mechanical energy from heart beat and pulse. Piezoelectric structure can convert mechanical energy to electric energy. In the same design condition, the more electric energy is generated, the better the piezoelectric structure design. This paper discusses the topology optimization method for the most efficient implantable piezoelectric energy harvesting device. Finally, a design example based on the proposed method is given and the result is discussed.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Mahidur R. Sarker ◽  
Ramizi Mohamed ◽  
Mohamad Hanif Md Saad ◽  
Muhammad Tahir ◽  
Aini Hussain ◽  
...  

This paper presents a hybrid optimization approach for the enhancement of performance of a piezoelectric energy harvesting system (PEHS). The existing PEHS shows substantial power loss during hardware implementation. To overcome the problem, this study proposes a hybrid optimization technique to improve the PEHS efficiency. In addition, the converter design as well as controller technique are enhanced and simulated in a MATLAB/Simulink platform. The controller technique of the proposed structure is connected to the converter prototype through the dSPACE DS1104 board (dSPACE, Paderborn, Germany). To enhance the proportional-integral voltage controller (PIVC) based on hybrid optimization method, a massive enhancement in reducing the output error is done in terms of power efficiency, power loss, rising time and settling time. The results show that the overall PEHS converter efficiency is about 85% based on the simulation and experimental implementations.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 966
Author(s):  
Wancheng Qin ◽  
Peng Zhou ◽  
Yajun Qi ◽  
Tianjin Zhang

Nowadays, wearable and flexible nanogenerators are of great importance for portable personal electronics. A flexible piezoelectric energy harvester (f-PEH) based on Bi3.15Nd0.85Ti3O12 single crystalline nanoplates (BNdT NPs) and polydimethylsiloxane (PDMS) elastomeric polymer was fabricated, and high piezoelectric energy harvesting performance was achieved. The piezoelectric output performance is highly dependent on the mass ratio of the BNdT NPs in the PDMS matrix. The as-prepared f-PEH with 12.5 wt% BNdT NPs presents the highest output voltage of 10 V, a peak-peak short-circuit current of 1 μA, and a power of 1.92 μW under tapping mode of 6.5 N at 2.7 Hz, which can light up four commercial light emitting diodes without the energy storage process. The f-PEHs can be used to harvest daily life energy and generate a voltage of 2–6 V in harvesting the mechanical energy of mouse clicking or foot stepping. These results demonstrate the potential application of the lead-free BNdT NPs based f-PEHs in powering wearable electronics


Sign in / Sign up

Export Citation Format

Share Document