Performance of the Iridium Oxide (IrO2)-Modified Titanium Bipolar Plates for the Light Weight Proton Exchange Membrane Fuel Cells

2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Szu-Hua Wang ◽  
Wai-Bun Lui ◽  
Jinchyau Peng ◽  
Jin-Sheng Zhang

In this current study, we are attempting to build up a light weight and corrosion resistant bipolar plate for the proton exchange membrane fuel cell. A titanium bipolar plate substrate has been chosen as the base metal due to its low cost, simplicity to manufacture into stampable bipolar plates, and its light weight. Our goal is to obtain a smaller and lighter weight single fuel cell is to sinter titanium with a corrosion resistant material. Iridium oxide (IrO2) was investigated. The cell performance of the iridium oxide-sintered bipolar plates is close to and even better than the proton exchange membrane fuel cells, with graphite and pure titanium bipolar plates at low operating temperature with low and high membrane humidifier temperatures, respectively. Iridium oxide-sintered titanium bipolar plates can be employed to produce fuel cells with light weight and low sintering cost, ideal for portable applications.

2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


2011 ◽  
Vol 228-229 ◽  
pp. 1029-1034
Author(s):  
Jian Lan ◽  
Chen Ni ◽  
Lin Hua

As a key component of proton exchange membrane fuel cell (PEMFC), the bipolar plate’s performance will directly affect the power output and battery life of the fuel cell. The conventional metallic bipolar plate is prone to warp, and has large flatness error with residual stress induced by forming process. This will result in contacting incompletely with membrane electrode assemblies (MEA) and lower fuel cell efficiency. A cylindrical structure of the PEMFC metallic polar plate is proposed to improve its stiffness and to reduce assembling error of the fuel cell. The polar plate features, which were originally designed on a flat surface, are projected onto the cylindrical surface with a certain curvature. Two cylindrical polar plates are welded together to become a bipolar plate. The finite element method is applied to compare the stiffness of the conventional and cylindrical polar & bipolar plates. The cylindrical bipolar plate has better stiffness and anti-warping than the conventional bipolar plate. The feasibility of the cylindrical structure is verified by experiment and provides a new idea for the improvement of the bipolar plate and fuel cell stack.


2012 ◽  
Vol 445 ◽  
pp. 108-113 ◽  
Author(s):  
H.J. Kwon ◽  
Y.P. Jeon ◽  
Chung Gil Kang

A Proton Exchange Membrane Fuel Cell (PEMFC) is a type of fuel cell being developed for automotive applications as well as for stationary fuel cell applications and portable fuel cell applications. Its performance such as power density can be improved by the use of the bipolar plate with a new lightweight material which is one of core components making up PEMFC stack. Aluminum alloy has good mechanical properties not only in terms of density, electrical resistivity and thermal conductivity, but also in terms of corrosion resistant compared with stainless steel and graphite composites bipolar plate. Furthermore, the use of aluminum for a bipolar plate reduces simultaneously the cost and weight of it, and it contributes to the ease of machining. For these reason, an aluminum alloy is selected in this study. This study presents the feasibility of the simulation for the development of aluminum bipolar plates that consists of multi array micro channels. The analytical solutions obtained by the simulation are validated by the comparison with the experimental results. From the results, it is ensured that the stamping processes for the bipolar plate could be predicted and designed by the results of the by FE-Simulation.


1995 ◽  
Vol 393 ◽  
Author(s):  
R. L. Borup ◽  
N. E. Vanderborgh

ABSTRACTBipolar plates for proton exchange membrane (PEM) fuel cells are currently under development. These plates separate individual cells of the fuel cell stack, and thus must be sufficiently strong to support clamping forces, be electrically conducting, be fitted with flow channels for stack thermal control, be of a low permeability material to separate safely hydrogen and oxygen feed streams, be corrosion resistant, and be fitted with distribution channels to transfer the feed streams over the plate surface. To date, bipolar plate costs dominate stack costs, and therefore future materials need to meet strict cost targets.A first step in the bipolar plate development program is an assessment of design constraints. Such constraints have been estimated and evaluated and are discussed here. Conclusions point to promising advanced materials, such as conductive, corrosion resistant coatings on metal substrates, as candidates for mass production of fuel cell bipolar plates. Possible candidate materials are identified, and testing procedures developed to determine suitability of various materials.


Author(s):  
Elaine Petrach ◽  
Ismat Abu-Isa ◽  
Xia Wang

The bipolar plate is an important and integral part of the proton exchange membrane (PEM) fuel cell and PEM fuel cell stacks. Currently bipolar plates represent more than 80% by weight and 40% by cost of the fuel cell stack. Traditional materials used for bipolar plates are primarily graphite and metal. Search for alternative materials to improve weight and cost considerations is needed. This paper discusses the results of an investigation of two elastomeric materials being developed for bipolar plate applications. Perceived advantages of the use of elastomers for this application include improved sealability without additional gasket material, reduction in the contact resistance between individual cells, improved formability, and weight reduction. The first elastomer investigated is a two component liquid silicone rubber, and the second is a polyolefin thermoplastic elastomer. These polymer matrix materials are made electrically conductive by the addition of conductive fillers including thermal graphite fibers (Cytec DKD & CKD), high surface area conductive carbon black nanoparticles (Cabot Black Pearls 2000), and graphite flakes (Asbury 4012). Electrical conductivity, processability, and elastic behavior measurements of the composites have been conducted. Some of silicone-graphite fiber composites material exhibit conductivity values comparable to those of the traditional graphite plate materials. Elasticity of all composites is maintained even at high filler concentrations.


Sign in / Sign up

Export Citation Format

Share Document