scholarly journals Design and Testing Criteria for Bipolar Plate Materials for Pem Fuel Cell Applications

1995 ◽  
Vol 393 ◽  
Author(s):  
R. L. Borup ◽  
N. E. Vanderborgh

ABSTRACTBipolar plates for proton exchange membrane (PEM) fuel cells are currently under development. These plates separate individual cells of the fuel cell stack, and thus must be sufficiently strong to support clamping forces, be electrically conducting, be fitted with flow channels for stack thermal control, be of a low permeability material to separate safely hydrogen and oxygen feed streams, be corrosion resistant, and be fitted with distribution channels to transfer the feed streams over the plate surface. To date, bipolar plate costs dominate stack costs, and therefore future materials need to meet strict cost targets.A first step in the bipolar plate development program is an assessment of design constraints. Such constraints have been estimated and evaluated and are discussed here. Conclusions point to promising advanced materials, such as conductive, corrosion resistant coatings on metal substrates, as candidates for mass production of fuel cell bipolar plates. Possible candidate materials are identified, and testing procedures developed to determine suitability of various materials.

2002 ◽  
Vol 756 ◽  
Author(s):  
Leszek Gladczuk ◽  
Chirag Joshi ◽  
Anamika Patel ◽  
Jim Guiheen ◽  
Zafar Iqbal ◽  
...  

ABSTRACTTantalum is a tough, corrosion resistant metal, which would be suitable for use as bipolar plates for proton exchange membrane (PEM) fuel cells, if it was not for its high weight and price. Relatively thin tantalum coatings, however, can be deposited on other inexpensive and lighter weight metals, such as aluminum and steel, providing a passive protection layer on these easily formed substrates. We have successfully deposited, high quality α (body-centered-cubic, bcc) and β (tetragonal) phase tantalum coatings that were a few micrometers thick by dc magnetron sputtering on steel and aluminum. The growth of the thermodynamically preferred body-centered-cubic (bcc) tantalum phase was induced by a choice of deposition conditions and substrate surface treatment. The microstructure and corrosion resistance of the α-phase in an environment approximately simulating the electrochemical conditions used in a PEM fuel cell were investigated under potentiodynamic conditions. Preliminary potentiostatic measurements of a β-phase sample are also presented.


2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Szu-Hua Wang ◽  
Wai-Bun Lui ◽  
Jinchyau Peng ◽  
Jin-Sheng Zhang

In this current study, we are attempting to build up a light weight and corrosion resistant bipolar plate for the proton exchange membrane fuel cell. A titanium bipolar plate substrate has been chosen as the base metal due to its low cost, simplicity to manufacture into stampable bipolar plates, and its light weight. Our goal is to obtain a smaller and lighter weight single fuel cell is to sinter titanium with a corrosion resistant material. Iridium oxide (IrO2) was investigated. The cell performance of the iridium oxide-sintered bipolar plates is close to and even better than the proton exchange membrane fuel cells, with graphite and pure titanium bipolar plates at low operating temperature with low and high membrane humidifier temperatures, respectively. Iridium oxide-sintered titanium bipolar plates can be employed to produce fuel cells with light weight and low sintering cost, ideal for portable applications.


2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


2011 ◽  
Vol 228-229 ◽  
pp. 1029-1034
Author(s):  
Jian Lan ◽  
Chen Ni ◽  
Lin Hua

As a key component of proton exchange membrane fuel cell (PEMFC), the bipolar plate’s performance will directly affect the power output and battery life of the fuel cell. The conventional metallic bipolar plate is prone to warp, and has large flatness error with residual stress induced by forming process. This will result in contacting incompletely with membrane electrode assemblies (MEA) and lower fuel cell efficiency. A cylindrical structure of the PEMFC metallic polar plate is proposed to improve its stiffness and to reduce assembling error of the fuel cell. The polar plate features, which were originally designed on a flat surface, are projected onto the cylindrical surface with a certain curvature. Two cylindrical polar plates are welded together to become a bipolar plate. The finite element method is applied to compare the stiffness of the conventional and cylindrical polar & bipolar plates. The cylindrical bipolar plate has better stiffness and anti-warping than the conventional bipolar plate. The feasibility of the cylindrical structure is verified by experiment and provides a new idea for the improvement of the bipolar plate and fuel cell stack.


2012 ◽  
Vol 445 ◽  
pp. 108-113 ◽  
Author(s):  
H.J. Kwon ◽  
Y.P. Jeon ◽  
Chung Gil Kang

A Proton Exchange Membrane Fuel Cell (PEMFC) is a type of fuel cell being developed for automotive applications as well as for stationary fuel cell applications and portable fuel cell applications. Its performance such as power density can be improved by the use of the bipolar plate with a new lightweight material which is one of core components making up PEMFC stack. Aluminum alloy has good mechanical properties not only in terms of density, electrical resistivity and thermal conductivity, but also in terms of corrosion resistant compared with stainless steel and graphite composites bipolar plate. Furthermore, the use of aluminum for a bipolar plate reduces simultaneously the cost and weight of it, and it contributes to the ease of machining. For these reason, an aluminum alloy is selected in this study. This study presents the feasibility of the simulation for the development of aluminum bipolar plates that consists of multi array micro channels. The analytical solutions obtained by the simulation are validated by the comparison with the experimental results. From the results, it is ensured that the stamping processes for the bipolar plate could be predicted and designed by the results of the by FE-Simulation.


2008 ◽  
Vol 41-42 ◽  
pp. 469-475 ◽  
Author(s):  
Yan Wang ◽  
Derek O. Northwood

In proton exchange membrane fuel cells (PEMFCs), the bipolar plates supply the reactant gases through the flow channels to the electrodes and serve the purpose of electrochemically connecting one cell to another in the electrochemical cell stack. Requirements of the bipolar plate material are: high values of electronic conductivity; high values of thermal conductivity; high mechanical strength; impermeability to reactant gases; resistance to corrosion; and low cost of automated production. Metallic materials meet many of these requirements but the challenge has been in obtaining the required corrosion resistance. In the paper, six metallic materials were investigated as potential bipolar plate materials. The results showed that the corrosion rates were too high even for the most corrosion resistant metals (SS316L and grade 2 Ti), and that coatings would be required.


2019 ◽  
Vol 3 (2) ◽  
pp. 48 ◽  
Author(s):  
Alexander Bauer ◽  
Sebastian Härtel ◽  
Birgit Awiszus

Producing metallic bipolar plates for Proton Exchange Membrane (PEM) fuel cells by forming is still a topic of research. So far, it has mainly been applied for small batches, but it offers substantial advantages regarding both costs and installation space compared to the established graphite based solutions. One new possibility for an efficient manufacturing process of these metallic bipolar plates is the forming by rolling. For the first time, this technology was used for relevant industrial scale channel geometries. By the use of an experimental rolling mill, 0.1 mm thick 316L (1.4404) stainless steel foils were roll-formed to achieve previously designed channel geometries within one rolling pass. The conducted experiments show promising results regarding the forming accuracy and the shape of the channel cross-sections. With the aim for a proof of concept in the beginning and a subsequent optimization of the process, a numerical simulation was set up prior to the real experiments and later calibrated with the experimental forming results. This calibrated model was used for further improvements of the process with the objective at reducing wrinkles and distortion. The investigation of this new process method for the manufacturing of metallic bipolar plates shows enormous potential and can lead to a more efficient and cheaper production.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Tabbi Wilberforce ◽  
Oluwatosin Ijaodola ◽  
Ogungbemi Emmanuel ◽  
James Thompson ◽  
Abdul Ghani Olabi ◽  
...  

A low cost bipolar plate materials with a high fuel cell performance is important for the establishment of Proton Exchange Membrane (PEM ) fuel cells into the competitive world market. In this research, the effect of different bipolar plates material such as Aluminum (Al), Copper (Cu), and Stainless Steel (SS) of a single stack of proton exchange membrane (PEM) fuel cells was investigated both numerically and experimentally. Firstly, a three dimensional (3D) PEM fuel cell model was developed, and simulations were conducted using commercial computational fluid dynamics (CFD) ANSYS FLUENT to examine the effect of each bipolar plate materials on cell performance. Along with cell performance, significant parameters distributions like temperature, pressure, a mass fraction of hydrogen, oxygen, and water is presented. Then, an experimental study of a single cell of Al, Cu, and SS bipolar plate material was used in the verification of the numerical investigation. Finally, polarization curves of numerical and experimental results was compared for validation, and the result shows that Al serpentine bipolar plate material performed better than Cu and SS materials. The outcome of the investigation was in tandem to the fact that due to adsorption on metal surfaces, hydrogen molecules is more stable on Al surface than Cu and SS surfaces.


Author(s):  
S. Cano-Andrade ◽  
A. Herna´ndez-Guerrero ◽  
M. Von-Spakovsky ◽  
C. Rubio-Arana

Proton exchange membrane (PEM) fuel cells are promising candidates for power generation in transportation, portable, and stationary applications due to their high full and partload efficiencies, low operating temperatures, high power densities, fast startups, and potential system robustness. A vital component for this new technology is the bipolar plate since it supplies the fuel and oxidant, removes the products of reaction, collects the current produced, and provides mechanical support for the cells in the stack. However, the bipolar plate adds weight, volume, and cost to the fuel cell. A way to offset this, at least partially and perhaps significantly, would be by improving the bipolar plate flow field layout so that the power density of the cell or stack (parallel cell arrangement) is improved. To that end, this paper proposes an innovative radial flow field design for which a three-dimensional model of the heat, mass, and charge transport and electrochemistry in a single fuel cell has been developed and solved via a finite volume approach. This model is based on the following supposition: steady state, isothermal, single phase, isotropic materials and mass transfer in three directions. Predictions of current density as well as the pressure losses, velocities, and flow field contours are made and presented.


Sign in / Sign up

Export Citation Format

Share Document