Parametric Instability in a Taut String With a Periodically Moving Boundary

2014 ◽  
Vol 81 (6) ◽  
Author(s):  
K. Wu ◽  
W. D. Zhu

Parametric instability in a taut string with a periodically moving boundary, which is governed by a one-dimensional wave equation with a periodically varying domain, is investigated. Parametric instability usually occurs when coefficients in governing differential equations of a system periodically vary, and the system is said to be parametrically excited. Since the governing partial differential equation of the string with a periodically moving boundary can be transformed to one with a fixed domain and periodically varying coefficients, the string is parametrically excited and instability caused by the periodically moving boundary is classified as parametric instability. The free linear vibration of a taut string with a constant tension, a fixed boundary, and a periodically moving boundary is studied first. The exact response of the linear model is obtained using the wave or d'Alembert solution. The parametric instability in the string features a bounded displacement and an unbounded vibratory energy, and parametric instability regions in the parameter plane are classified as period-i (i≥1) parametric instability regions, where period-1 parametric instability regions are analytically obtained using the wave solution and the fixed point theory, and period-i (i>1) parametric instability regions are numerically calculated using bifurcation diagrams. If the periodic boundary movement profile of the string satisfies certain condition, only period-1 parametric instability regions exist. However, parametric instability regions with higher period numbers can exist for a general periodic boundary movement profile. Three corresponding nonlinear models that consider coupled transverse and longitudinal vibrations of the string, only the transverse vibration, and coupled transverse and axial vibrations are introduced next. Responses and vibratory energies of the linear and nonlinear models are calculated for both stable and unstable cases using three numerical methods: Galerkin's method, the explicit finite difference method, and the implicit finite difference method; advantages and disadvantages of each method are discussed. Numerical results for the linear model can be verified using the exact wave solution, and those for the nonlinear models are compared with each other since there are no exact solutions for them. It is shown that for parameters in the parametric instability regions of the linear model, the responses and vibratory energies of the nonlinear models are close to those of the linear model, which indicates that the parametric instability in the linear model can also exist in the nonlinear models. The mechanism of the parametric instability is explained in the linear model and through axial strains in the third nonlinear model.

Author(s):  
K. Wu ◽  
W. D. Zhu

Parametric instability in a stationary string with a periodically varying length is investigated. The free linear vibration of a stationary string with a constant tension, a fixed boundary, and a periodically moving boundary is studied first. The parametric instability in the string features a bounded displacement and an unbounded vibratory energy, and parametric instability regions in the parameter plane are classified as period-i (i ≥ 1) parametric instability regions. If the periodic boundary movement profile of the string satisfies certain condition, only period-1 parametric instability regions exist. However, parametric instability regions with higher period numbers can exist for a general periodic boundary movement profile. A corresponding nonlinear model that consider coupled transverse and longitudinal vibrations of the string are introduced next. Responses and vibratory energies of the linear and nonlinear models are calculated for both stable and unstable cases using the finite difference method. The mechanism of the parametric instability is explained in the linear model and through axial strains in the nonlinear model.


2003 ◽  
Vol 45 (2) ◽  
pp. 181-193 ◽  
Author(s):  
S. M. Moghadas ◽  
A. B. Gumel

AbstractA five-dimensional deterministic model is proposed for the dynamics between HIV and another pathogen within a given population. The model exhibits four equilibria: a disease-free equilibrium, an HIV-free equilibrium, a pathogen-free equilibrium and a co-existence equilibrium. The existence and stability of these equilibria are investigated. A competitive finite-difference method is constructed for the solution of the non-linear model. The model predicts the optimal therapy level needed to eradicate both diseases.


1984 ◽  
Vol 106 (3) ◽  
pp. 486-490 ◽  
Author(s):  
A. M. Hassanein ◽  
G. L. Kulcinski

The solution of the heat conduction probem in moving boundary conditions is very important in predicting accurate thermal behavior of materials when very high energy deposition is expected. Such high fluxes are encountered on first wall materials and other components in fusion reactors. A numerical method has been developed to solve this problem by the use of the Green’s function. A comparison is made between this method and a finite difference one. The comparison in the finite difference method is made with and without the variation of the thermophysical properties with temperature. The agreement between Green’s function and the finite difference method is found to be very good. The advantages and disadvantages of using the Green’s function method and the importance of the variation of material thermal properties with temperature are discussed.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
W. D. Zhu ◽  
K. Wu

Parametric instability in a system is caused by periodically varying coefficients in its governing differential equations. While parametric excitation of lumped-parameter systems has been extensively studied, that of distributed-parameter systems has been traditionally analyzed by applying Floquet theory to their spatially discretized equations. In this work, parametric instability regions of a second-order nondispersive distributed structural system, which consists of a translating string with a constant tension and a sinusoidally varying velocity, and two boundaries that axially move with a sinusoidal velocity relative to the string, are obtained using the wave solution and the fixed point theory without spatially discretizing the governing partial differential equation. There are five nontrivial cases that involve different combinations of string and boundary motions: (I) a translating string with a sinusoidally varying velocity and two stationary boundaries; (II) a translating string with a sinusoidally varying velocity, a sinusoidally moving boundary, and a stationary boundary; (III) a translating string with a sinusoidally varying velocity and two sinusoidally moving boundaries; (IV) a stationary string with a sinusoidally moving boundary and a stationary boundary; and (V) a stationary string with two sinusoidally moving boundaries. Unlike parametric instability regions of lumped-parameter systems that are classified as principal, secondary, and combination instability regions, the parametric instability regions of the class of distributed structural systems considered here are classified as period-1 and period-i (i>1) instability regions. Period-1 parametric instability regions are analytically obtained; an equivalent total velocity vector is introduced to express them for all the cases considered. While period-i (i>1) parametric instability regions can be numerically calculated using bifurcation diagrams, it is shown that only period-1 parametric instability regions exist in case IV, and no period-i (i>1) parametric instability regions can be numerically found in case V. Unlike parametric instability in a lumped-parameter system that is characterized by an unbounded displacement, the parametric instability phenomenon discovered here is characterized by a bounded displacement and an unbounded vibratory energy due to formation of infinitely compressed shock-like waves. There are seven independent parameters in the governing equation and boundary conditions, and the parametric instability regions in the seven-dimensional parameter space can be projected to a two-dimensional parameter plane if five parameters are specified. Period-1 parametric instability occurs in certain excitation frequency bands centered at the averaged natural frequencies of the systems in all the cases. If the parameters are chosen to be in the period-i (i≥1) parametric instability region corresponding to an integer k, an initial smooth wave will be infinitely compressed to k shock-like waves as time approaches infinity. The stable and unstable responses of the linear model in case I are compared with those of a corresponding nonlinear model that considers the coupled transverse and longitudinal vibrations of the translating string and an intermediate linear model that includes the effect of the tension change due to axial acceleration of the string on its transverse vibration. The parametric instability in the original linear model can exist in the nonlinear and intermediate linear models.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Alvaro H. Salas ◽  
S. A. El-Tantawy ◽  
Jairo E. Castillo H.

In this paper, the dissipative and nondissipative modulated pulses such as rogue waves (RWs) and breathers (Kuznetsov-Ma breathers and Akhmediev breathers) that can exist and propagate in several fields of sciences, for example, plasma physics, have been analyzed numerically. For this purpose, the fluid dusty plasma equations with taking the kinematic dust viscosity into account are reduced to the linear damped nonlinear Schrödinger equation using a reductive perturbation technique. It is known that this equation is not integrable and, accordingly, does not have analytical solution. Thus, for modelling both dissipative RWs and breathers, the improved finite difference method is introduced for this purpose. It is found that FDM is a good numerical technique for small time interval but for large time interval it becomes sometimes unacceptable. Therefore, to describe these waves accurately, the new improved numerical method is considered, which is called the hybrid finite difference method and moving boundary method (FDM-MBM). This last and updated method gives an accurate and excellent description to many physical results, as it was applied to the dust plasma results and the results were good.


Sign in / Sign up

Export Citation Format

Share Document