Comparison and Assessment of the Creep-Fatigue Evaluation Methods With Notched Specimen Made of Mod.9Cr-1Mo Steel

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Takanori Karato ◽  
Sota Watanabe ◽  
Osamu Inoue ◽  
...  

In components design at elevated temperature, creep-fatigue is one of the most important failure modes, and assessment of creep-fatigue life in structural discontinuities is an important issue in evaluating the integrity of components. Therefore, a lot of creep-fatigue life evaluation methods were proposed until now. To compare and assess the evaluation methods, a series of creep-fatigue test was carried out with notched specimens. All the specimens were made of Mod.9Cr-1Mo steel, which is a candidate material for primary and secondary heat transport system components of the Japan sodium-cooled fast reactor (JSFR). Mechanical creep-fatigue tests and thermal creep-fatigue test were performed by using a conventional uni-axial push–pull fatigue test machine and a thermal gradient generating system with an induction heating. The stress concentration levels were adjusted by varying the notch radius in the each test. The creep-fatigue lives, crack initiation, and propagation processes were monitored by a digital microscope and the replica method. A series of finite element analysis (FEA) was carried out to predict the number of cycles to failure by the several creep-fatigue life evaluation methods. Then, these predictions were compared with the test results. Several types of evaluation methods such are stress redistribution locus (SRL) method, simple elastic follow-up method and the methods described in the design and constriction code for fast reactor (FR) published by the Japan Society of Mechanical Engineers (JSME FRs code) were applied. Through the comparisons, it was appeared that SRL method gave rational conservative prediction of the creep-fatigue life when the factor of κ = 1.6 was applied for all conditions tested in this study. A comparison of SRL method and simple elastic follow-up method indicated that SRL method applied factor of κ = 1.6 gave the smallest creep-fatigue life in practicable stress range level. The JSME FRs code gave an evaluation 70–100 times conservative lives comparing with the test results.

Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Takanori Karato ◽  
Sota Watanabe ◽  
Osamu Inoue ◽  
...  

In a component design at elevated temperature, creep-fatigue is one of the most important failure modes, and assessment of creep-fatigue life in structural discontinuity is important issue to evaluate structural integrity of the components. Therefore a lot of creep-fatigue life evaluation methods were proposed until now. To compare and assess these evaluation methods, a series of creep-fatigue tests was carried out with notched specimens. All the specimens were made of Mod.9Cr-1Mo steel, which it is a candidate material for a primary and secondary heat transport system components of JSFR (Japan Sodium-cooled Fast Reactor). Mechanical creep-fatigue tests and thermal creep-fatigue tests were performed by using conventional uni-axial push-pull fatigue test machine and thermal gradient generating system with an induction heating coil. Stress concentration levels were adjusted by varying the diameters of notch roots in the both tests. In the test, creep-fatigue lives, crack initiation and propagation processes were observed by digital micro-scope and replica method. Besides those, a series of elastic Finite Element Analysis (FEA) were carried out to predict the number of cycles to failure by several creep-fatigue life evaluation methods. Then these predictions were compared with test results. Several types of evaluation methods which are stress redistribution locus (SRL) method, simple elastic follow-up method and the methods described in JSME FR (Fast Reactor) code were applied. The applicability and conservativeness of these methods were discussed. It was appeared that SRL method gave rational prediction of creep-fatigue life with conservativeness when the factor of κ = 1.6 was applied for all the conditions tested in this study. Comparison of SRL method and simple elastic follow-up method indicated that SRL method applied factor of κ = 1.6 gave the smallest creep-fatigue life in practicable stress level. JSME FR code gave an evaluation 70∼100 times conservative lives comparing with the test results.


Author(s):  
Masanori Ando ◽  
Yuichi Hirose ◽  
Takano Masahito

Abstract This study compares and assesses the different fatgue and creep-fatigue life eveluation methods by performing tests of perforated plate made of Mod.9Cr-1Mo steel. Multi-perforated plate was subjected to mechanical cyclic loading at 550°C, and crack initiation and propagation on the surfaces of the holes were observed. A series of finite element analyses (FEA) were carried out to predict the number of cycles to failure by the several failure life evaluation methods, and these predictions were then compared with the test results. Several types of evaluation methods that use the elastic FEA were applied, namely the stress redistribution locus (SRL) method, simple elastic follow-up method. In addition to these, evaluation was also carried out using the results of inelastic FEA to compare these elastic FEA based estimation method. The comparisons indicate that, for all conditions tested, the SRL method provided a rational prediction of the fatigue and creep-fatigue life when ? = 1.6 was applied, where ? = 1.6 is the recommended reduction factor for this method in general use. A comparison of the SRL method and the results of the inelastic FEA indicated that the applicability of the value of factor ? in the SRL method depends on the elastic region remaining in the cross-section including the evaluated point and the spread in the plastically deformed region in the specimen.


Sign in / Sign up

Export Citation Format

Share Document