lead free solders
Recently Published Documents


TOTAL DOCUMENTS

688
(FIVE YEARS 66)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Vol 398 ◽  
pp. 139339
Author(s):  
Sabrina Patricia Rosoiu ◽  
Stefania Costovici ◽  
Calin Moise ◽  
Aurora Petica ◽  
Liana Anicai ◽  
...  

2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiuqi Wang ◽  
Fenglian Sun ◽  
Bangyao Han ◽  
Yilun Cao ◽  
Jinyang Du ◽  
...  

Purpose The purpose of this paper is to investigate the wetting behaviors of Sn-5Sb-CuNiAg solders on copper substrates in different soldering processes and the effects of alloying elements on the wettability. Design/methodology/approach Sn-5Sb-CuNiAg solder balls (750 µm in diameter) were spread and wetted on 40 × 40 × 1 mm copper plates, in different fluxes, soldering temperatures and time. The contact angles were obtained by a home-made measuring instrument. The samples were polished and deep etched before analyzed by scanning electron microscopy. Energy dispersive X-ray spectroscopy was used to identify the composition of the joints. Findings The effects of different soldering processes and alloying elements on the wetting behaviors of Sn-5Sb-CuNiAg solders on copper substrates were calculated and expounded. The rosin-based flux could effectively remove oxidation layers and improve the wettability of Sn-5Sb-CuNiAg solders. Then with the increase of soldering temperature and time, the contact angles decreased gradually. The soldering processes suited for Sn-5Sb-CuNiAg solders were RMA218, 280°C and 30 s. Considered the effects of alloying elements, the wettability of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag was relatively favorable on copper substrates. Besides, Ni could accumulate at the solder/Cu interface and form a jagged (Cu,Ni)6Sn5 IMC. Originality/value This work was carried out with our handmade experiment equipment and the production of the quinary lead-free solder alloy used in wetting tests belongs to us. The investigated Sn-5Sb-CuNiAg alloys exhibited higher melting point and preferable wettability, that was one of the candidates for high-temperature lead-free solders to replace high-Pb solders, and applied extremely to high temperature and frequency working environments of the third-generation semiconductors components, with a greater potential research and development value.


Author(s):  
Biao Yuan ◽  
Zhimin Liang ◽  
Zongyuan Yang ◽  
Fei Shen ◽  
Da Xu ◽  
...  

AbstractSn–Sb lead-free solders are considered to substitute the tin–lead solders due to their great mechanical properties. At room temperature, the mechanical properties of Ni/Au/Sn–5Sb/Au/Ni and Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni linear solder joints were investigated by nanoindentation experiments at different loads. The results showed that the Sn–Sb intermetallic compound (IMC) was distributed in the β-Sn matrix in Ni/Au/Sn–5Sb/Au/Ni solder joints. Co-addition of Cu and Ag resulted in the formation of the rod-shaped Cu6Sn5 and the fine granular Ag3Sn IMCs. At the same load and loading/unloading rate, the indentation depth and residual indentation morphologies of Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni solder joints were smaller than those of Ni/Au/Sn–5Sb/Au/Ni solder joints. The hardness of the two kinds of solder joints decreased with the increase in load, while the Young’s modulus was independent of load. In addition, compared to the Ni/Au/Sn–5Sb/Au/Ni solder joints, the hardness, Young’s modulus and stress exponents of Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni solder joints achieved an improvement due to the co-addition of Ag and Cu.


Author(s):  
Mehdi Raza ◽  
Lee Shewchenko ◽  
Ayodele Olofinjana ◽  
Damon Kent ◽  
Jitendra Mata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document