Investigation on Constraint Effect of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Guian Qian ◽  
Markus Niffenegger

The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic–plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic–plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K–T method. The safety margin of the RPV is larger based on the K–T approach than based only on the K approach. The J–Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic–plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.

Author(s):  
Guian Qian ◽  
Markus Niffenegger

The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic-plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic-plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K-T method. The safety margin of the RPV is larger based on the K-T approach than only based on the K approach. The J-Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic-plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.


Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.


Author(s):  
Naoki Ogawa ◽  
Kentaro Yoshimoto ◽  
Takatoshi Hirota ◽  
Shohei Sakaguchi ◽  
Toru Oumaya

In recent years, the integrity of reactor pressure vessel (RPV) under pressurized thermal shock (PTS) accident has become controversial issue since the larger shift of RTNDT in some higher fluence surveillance data raised a concern on RPV integrity. Under PTS condition, the combination of thermal stress due to a temperature gradient and mechanical stress due to internal pressure causes considerable tensile stress inside the wall of RPV. Currently, RPV integrity is assessed by comparing stress intensity factor on a crack tip under PTS condition and a reference toughness curve based on the fracture toughness data of irradiated compact specimens. Since PTS loading is large enough to cause plastic deformation, a crack tip behavior on the inner surface of RPV can be explained by elastic-plastic fracture mechanics using the J-integral. In this study, 3D elastic plastic finite element analyses were performed to assess the crack tip behavior on surface of a RPV under Loss of coolant Accident, which causes one of the most severe PTS condition. In order to quantify the constraint effect on a surface crack, J-Q approach was applied. The constraint effect of a surface crack was compared with a compact specimen and its influence on the fracture toughness was assessed. As a result, the difference of constraint effect was clearly obtained. And it is recommended to consider constraint effects in the evaluation of structural integrity of RPV under PTS.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Stéphane Vidard

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main concerns regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Fast fracture risk is the main potential damage considered in the integrity assessment of RPV. In France, deterministic integrity assessment for RPV vis-à-vis the brittle fracture risk is based on the crack initiation stage. As regards the core area in particular, the stability of an under-clad postulated flaw is currently evaluated under a Pressurized Thermal Shock (PTS) through a dedicated fracture mechanics simplified method called “beta method”. However, flaw stability analyses are also carried-out in several other areas of the RPV. Thence-forward performing uniform simplified inservice analyses of flaw stability is a major concern for EDF. In this context, 3D finite element elastic-plastic calculations with flaw modelling in the nozzle have been carried out recently and the corresponding results have been compared to those provided by the beta method, codified in the French RSE-M code for under-clad defects in the core area, in the most severe events. The purpose of this work is to validate the employment of the core area fracture mechanics simplified method as a conservative approach for the under-clad postulated flaw stability assessment in the complex geometry of the nozzle. This paper presents both simplified and 3D modelling flaw stability evaluation methods and the corresponding results obtained by running a PTS event. It shows that the employment of the “beta method” provides conservative results in comparison to those produced by elastic-plastic calculations for the cases here studied.


2017 ◽  
Vol 22 (1) ◽  
pp. 49-80 ◽  
Author(s):  
M. Graba

Abstract This paper provides a numerical analysis of selected parameters of fracture mechanics for double-edge notched specimens in tension, DEN(T), under plane strain conditions. The analysis was performed using the elastic-plastic material model. The study involved determining the stress distribution near the crack tip for both small and large deformations. The limit load solution was verified. The J-integral, the crack tip opening displacement, and the load line displacement were determined using the numerical method to propose the new hybrid solutions for calculating these parameters. The investigations also aimed to identify the influence of the plate geometry and the material characteristics on the parameters under consideration. This paper is a continuation of the author’s previous studies and simulations in the field of elastic-plastic fracture mechanics [4, 6, 16, 17, 31].


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Dorinamaria Carka ◽  
Robert M. McMeeking ◽  
Chad M. Landis

In this technical brief, we compute the J-integral near a crack-tip in an elastic-perfectly-plastic material. Finite deformation is accounted for, and the apparent discrepancies between the prior results of the authors are resolved.


2005 ◽  
Vol 40 (5) ◽  
pp. 431-449 ◽  
Author(s):  
C. M Davies ◽  
N. P O'Dowd ◽  
K. M Nikbin ◽  
G A Webster ◽  
F Biglari

Under linear elastic and elastic-plastic conditions the K field and the HRR (Hutchinson-Rice-Rosengren) field respectively are expected to provide an accurate representation of the stress field close to the crack tip in an elastic-plastic material. It has recently been proposed in French and UK defect assessment procedures that the Neuber method, originally developed for sharply curved notches, provides an alternative approach to estimate both notch and crack-tip stress fields, for use in conjunction with the sigma- d (σd) method to predict creep crack initiation times. In this work, the crack-tip stress fields under plane strain conditions, predicted from the Neuber approach, are compared with the HRR and K fields as well as those obtained from full-field finite element calculations. A compact tension and a single edge notched tension specimen have been examined; the material model used is the Ramberg-Osgood, power law plasticity model. As expected, the K field and HRR field have been found to provide a good representation of the near-tip fields at low and high loads respectively. Satisfactory solutions have also been obtained through the use of the reference stress to estimate the amplitude of the crack-tip stress in conjunction with the HRR field. The Neuber approach provides a good estimate of the equivalent (von Mises) stresses over the full range of load levels. However, but the use of the Neuber approach directly to predict the maximum principal stress in the plane of the crack provides a non-conservative prediction. A modified Neuber method, using an appropriate scaling function, has been proposed to determine the maximum principal stress in the plane of the crack from the equivalent (von Mises) stress predicted by the Neuber approach. Using the proposed method, a significantly improved estimate of the crack-tip stresses is obtained.


Sign in / Sign up

Export Citation Format

Share Document