Structural Integrity Research for Reactor Pressure Vessel Under In-Vessel Retention of a Core Melt

Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.

Author(s):  
Komei Suzuki ◽  
Etsuo Murai ◽  
Yasuhiko Tanaka ◽  
Iku Kurihara ◽  
Tomoharu Sasaki ◽  
...  

Closure head forging (SA508, Gr.3 Cl.1) integrated with flange for PWR reactor pressure vessel has been developed. This is intended to enhance structural integrity of closure head resulted in elimination of ISI, by eliminating weld joint between closure head and flange in the conventional design. Manufacturing procedures have been established so that homogeneity and isotropy of the material properties can be assured in the closure head forging integrated with flange. Acceptance tensile and impact test specimens are taken and tested regarding the closure head forging integrated with flange as very thick and complex forgings. This paper describes the manufacturing technologies and material properties of the closure head forging integrated with flange.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Henriette Churier

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main considerations regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Brittle fracture risk associated with the embrittlement of RPV steel in irradiated areas is the main potential damage. In France, deterministic integrity assessment for RPV is based on the crack initiation stage. The stability of an under-clad postulated flaw in the core area is currently evaluated under a Pressurized Thermal Shock (PTS) through a fracture mechanics simplified method. One of the axes of EDF’s implemented strategy for NPP lifetime extension is the improvement of the deterministic approach with regards to the input data and methods so as to reduce conservatisms. In this context, 3D finite element elastic-plastic calculations with flaw modelling have been carried out recently in order to quantify the enhancement provided by a more realistic approach in the most severe events. The aim of this paper is to present both simplified and 3D modelling flaw stability evaluation methods and the results obtained by running a small break LOCA event.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Guian Qian ◽  
Markus Niffenegger

The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic–plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic–plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K–T method. The safety margin of the RPV is larger based on the K–T approach than based only on the K approach. The J–Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic–plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.


Author(s):  
Guian Qian ◽  
Markus Niffenegger

The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces the method of using fracture mechanics for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element (FE) model is used to perform thermal and fracture mechanics analyses by considering both elastic and elastic-plastic material models. The results show that the linear elastic analysis leads to a more conservative result than the elastic-plastic analysis. The variation of the T-stress and Q-stress (crack tip constraint loss) of a surface crack in a RPV subjected to PTSs is studied. A shallow crack is assumed in the RPV and the corresponding constraint effect on fracture toughness of the material is quantified by the K-T method. The safety margin of the RPV is larger based on the K-T approach than only based on the K approach. The J-Q method with the modified boundary layer formulation (MBL) is used for the crack tip constraint analysis by considering elastic-plastic material properties. For all transient times, the real stress is lower than that calculated from small scale yielding (SSY) due to the loss of crack tip constraint.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Junxiao Zheng ◽  
Bin Zhang ◽  
Shengchun Shi ◽  
Yixue Chen

Maintaining the structural integrity of the reactor pressure vessel (RPV) is a critical concern related to the safe operation of nuclear power plants. To estimate the structural integrity over the designed lifetime and to support analyses for a potential plant life extension, an accurate calculation of the fast neutron fluence (E>1.0 MeV orE>0.1 MeV) at the RPV is significant. The discrete ordinates method is one of the main methods to solve such problems. During the calculation process, many factors will affect the results. In this paper, the deviations introduced by different differencing schemes and mesh sizes on the AP1000 RPV fast neutron fluence have been studied, which are based on new discrete ordinates code ARES. The analysis shows that the differencing scheme (diamond difference with or without linear zero fix-up, theta weighted, directional theta weighted, and exponential directional weighted) introduces a deviation within 4%. The coarse mesh (4 × 4 cm meshes inXYplane) leads to approximately 23.7% calculation deviation compared to those of refined mesh (1 × 1 cm meshes inXYplane). Comprehensive study on the deviation introduced by differencing scheme and mesh size has great significance for reasoned evaluation of RPV fast neutron fluence calculation results.


Author(s):  
Li Chengliang ◽  
Shu Guogang ◽  
Chen Jun ◽  
Liu Yi ◽  
Liu Wei ◽  
...  

The effect of neutron irradiation damage of reactor pressure vessel (RPV) steels is a main failure mode. Accelerated neutron irradiation experiments at 292 °C were conducted on RPV steels, followed by testing of the mechanical, electrical and magnetic properties for both the unirradiated and irradiated steels in a hot laboratory. The results showed that a significant increase in the strength, an obvious decrease in toughness, a corresponding increase in resistivity, and the clockwise turn of the hysteresis loops, resulting in a slight decrease in saturation magnetization when the RPV steel irradiation damage reached 0.0409 dpa; at the same time, the variation rate of the resistivity between the irradiated and unirradiated RPV steels shows good agreement with the variation rates of the mechanical properties parameters, such as nano-indentation hardness, ultimate tensile strength, yield strength at 0.2% offset, upper shelf energy and reference nil ductility transition temperature. Thus, as a complement to destructive mechanical testing, the resistivity variation can be used as a potentially non-destructive evaluation technique for the monitoring of the RPV steel irradiation damage of operational nuclear power plants.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Stéphane Vidard

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main concerns regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Fast fracture risk is the main potential damage considered in the integrity assessment of RPV. In France, deterministic integrity assessment for RPV vis-à-vis the brittle fracture risk is based on the crack initiation stage. As regards the core area in particular, the stability of an under-clad postulated flaw is currently evaluated under a Pressurized Thermal Shock (PTS) through a dedicated fracture mechanics simplified method called “beta method”. However, flaw stability analyses are also carried-out in several other areas of the RPV. Thence-forward performing uniform simplified inservice analyses of flaw stability is a major concern for EDF. In this context, 3D finite element elastic-plastic calculations with flaw modelling in the nozzle have been carried out recently and the corresponding results have been compared to those provided by the beta method, codified in the French RSE-M code for under-clad defects in the core area, in the most severe events. The purpose of this work is to validate the employment of the core area fracture mechanics simplified method as a conservative approach for the under-clad postulated flaw stability assessment in the complex geometry of the nozzle. This paper presents both simplified and 3D modelling flaw stability evaluation methods and the corresponding results obtained by running a PTS event. It shows that the employment of the “beta method” provides conservative results in comparison to those produced by elastic-plastic calculations for the cases here studied.


Author(s):  
J. C. Kim ◽  
J. B. Choi ◽  
Y. H. Choi

Since early 1950’s fracture mechanics has brought significant impact on structural integrity assessment in a wide range of industries such as power, transportation, civil and petrochemical industries, especially in nuclear power plant industries. For the last two decades, significant efforts have been devoted in developing defect assessment procedures, from which various fitness-for-purpose or fitness-for-service codes have been developed. From another aspect, recent advances in IT (Information Technologies) bring rapid changes in various engineering fields. IT enables people to share information through network and thus provides concurrent working environment without limitations of working places. For this reason, a network system based on internet or intranet has been appeared in various fields of business. Evaluating the integrity of structures is one of the most critical issues in nuclear industry. In order to evaluate the integrity of structures, a complicated and collaborative procedure is required including regular in-service inspection, fracture mechanics analysis, etc. And thus, experts in different fields have to cooperate to resolve the integrity problem. In this paper, an integrity evaluation system on the basis of cooperative virtual reality environment for reactor pressure vessel which adapts IT into a structural integrity evaluation procedure for reactor pressure vessel is introduced. The proposed system uses Virtual Reality (VR) technique, Virtual Network Computing (VNC) and knowledge based programs. This system is able to support 3-dimensional virtual reality environment and to provide experts to cooperate by accessing related data through internet. The proposed system is expected to provide a more efficient integrity evaluation for reactor pressure vessel.


2021 ◽  
Vol 14 (1) ◽  
pp. 34-39
Author(s):  
D. A. Kuzmin ◽  
A. Yu. Kuz’michevskiy

The destruction of equipment metal by a brittle fracture mechanism is a probabilistic event at nuclear power plants (NPP). The calculation for resistance to brittle destruction is performed for NPP equipment exposed to neutron irradiation; for example, for a reactor plant such as a water-water energetic reactor (WWER), this is a reactor pressure vessel. The destruction of the reactor pressure vessel leads to a beyond design-basis accident, therefore, the determination of the probability of brittle destruction is an important task. The research method is probabilistic analysis of brittle destruction, which takes into account statistical data on residual defectiveness of equipment, experimental results of equipment fracture toughness and load for the main operating modes of NPP equipment. Residual defectiveness (a set of remaining defects in the equipment material that were not detected by non-destructive testing methods after manufacturing (operation), control and repair of the detected defects) is the most important characteristic of the equipment material that affects its strength and service life. A missed defect of a considerable size admitted into operation can reduce the bearing capacity and reduce the time of safe operation from the nominal design value down to zero; therefore, any forecast of the structure reliability without taking into account residual defectiveness will be incorrect. The application of the developed method is demonstrated on the example of an NPP reactor pressure vessel with a WWER-1000 reactor unit when using the maximum allowable operating loads, in the absence of load dispersion in different operating modes, and taking into account the actual values of the distributions of fracture toughness and residual defectiveness. The practical significance of the developed method lies in the possibility of obtaining values of the actual probability of destruction of NPP equipment in order to determine the reliability of equipment operation, as well as possible reliability margins for their subsequent optimization.


Sign in / Sign up

Export Citation Format

Share Document